東京大学 大気海洋研究所 研究トピックス

2025.7.7

Can Huang 海洋生態系科学部門 大学院生(博士課程3年)

Chunqi Jiang 海洋生態系科学部門 特任研究員 吉澤 晋 海洋生態系科学部門 准教授 演﨑 恒二 海洋生態系科学部門 教授

# 波の花から発見された新種細菌海の炭素循環の理解に貢献

東京大学大気海洋研究所の濵﨑教授と大学院生の Huang 氏らの研究グループは、冬季の日本海沿岸に現れる「波の花」から、ウェルコミクロビア門に属する新種細菌を発見し、Oceaniferula spumae と命名・記載しました。ウェルコミクロビア細菌群は海洋に広く存在しますが、培養が困難なため生態的役割が十分にわかっていません。本研究では、泡中の多糖類に着目した選択培養(注 1)によって新種細菌を分離し、そのゲノム解析(注 2)により、複雑な海洋多糖類の分解に関わる多数の酵素遺伝子を有する本菌の特徴を明らかにしました。海洋—大気間の炭素循環や気候調節に関与する微生物の新たなモデルとして、今後の気候—生態系フィードバック研究への応用が期待されます。

## 研究背景

海の表層には、植物プランクトンや細菌の活動によって 生じる複雑な糖やタンパク質などの高分子有機物が豊富に 存在しています。これらは海洋生態系における重要な栄養 源であると同時に、炭素循環や雲の形成といった地球規模 の気候プロセスにも関与していることから、その動態を制 御する微生物の働きを理解することが、気候変動の予測や 炭素循環モデルの高度化にとって不可欠とされています。

その中で、ウェルコミクロビア門(Verrucomicrobiota)に属する細菌群は、海洋、湖沼、土壌、動物の腸内などに広く分布し、海の中でも全体の約2%を占めることが報告されています。しかしこの門に属する細菌は、培養が困難であることから研究が遅れており、現時点でも正式に記載された種はわずか77種にとどまっているのが現状です。そのため、生理機能や生態的役割の詳細は未解明な点が多く残されています。

近年のゲノム解析により、ウェルコミクロビア門の一部の細菌が、他の細菌では分解しにくい硫酸化多糖類などを分解する能力を持つことが示されており、海洋の有機物分解と炭素循環への貢献が改めて注目されています。こうした知見を実証的に深めるためには、実際に培養された株を



用いた詳細な解析が必要不可欠です。

本研究では、そのようなウェルコミクロビアの新たな分離源として、冬の日本海沿岸に現れる「波の花(sea foam)」に着目しました。波の花は、風や波によって生じた泡が、海水中の有機物の界面活性作用によって安定化され、海岸に白く積もる自然現象です。この泡には、海藻やプランクトン由来の多糖類(例:フコイダン、寒天)が高濃度に含まれており、多糖類を資化する細菌にとっては格好の生育環境と考えられます(図1)。

#### 2)研究内容

2020年12月24日、石川県能登半島北西部の真浦海岸において波の花とその周辺海水を採取し、多糖類を単一炭素源とする選択培地にナリジクス酸などの抗生物質を添加したものを用いて分離培養を実施しました。その結果、波の花および関連サンプルから合計640株の細菌を得ることに成功し、16S rRNA遺伝子配列による系統解析の結果、ウェルコミクロビア門に属する新規株「NT6」が同定されました。

この株は、Oceaniferula 属に分類されることが明らかとなりましたが、既知の2種(O. flava, O. marina)とはゲノム類似度(ANI, dDDH)や脂質組成などの特徴が大きく異なり、新種として独立する十分な根拠が得られたことか



ら、「Oceaniferula spumae(オーシ アニフェルラ・スプーメ)」と命名 されました("spumae" はラテン語 で「泡」を意味します)(図 2)。

生理学的には、本株はグラム陰性・ 好気性の桿菌で、25 ~ 30℃、pH 8.0、塩濃度 3.5%で最適に増殖し、

図 1. 石川県能登半島・真浦海岸で発生した波の花(左)と寒天培地に生育した細菌群(右)

# 波の花から発見された新種細菌 海の炭素循環の理解に貢献

酸化酵素やアルカリ性ホスファターゼなどの酵素活性も確認されました。化学分類学的にも、特有の脂肪酸組成とメナキノン(MK-9、MK-8)プロファイルを示し、他種と明確に区別されます。また、完全ゲノム(約 4.65 Mbp)を決定して行った比較解析では、Oceaniferula属の他の2種と同じく O. spumae も多くの多糖分解酵素遺伝子(CAZymes)と酵素遺伝子クラスター(CGCs)を持つことが判明し、複雑な海洋有機物の分解に強く関与していることが示唆されました。

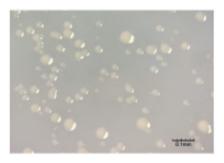
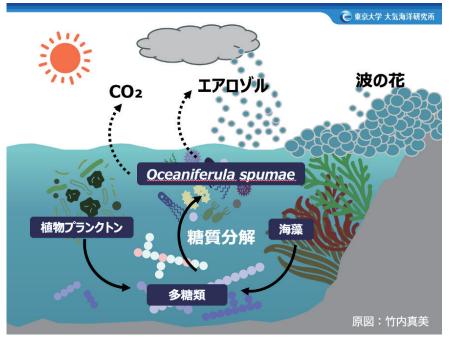






図 2. Oceaniferula spumae のコロニー(左)と電子顕微鏡写真(右)



## 3 社会的意義・今後の展望

本研究により、波の花という特異な環境から、これまで培養されていなかった新種のウェルコミクロビア門細菌を分離・記載することに成功しました。Oceaniferula spumae は、海藻や植物プランクトンに含まれる多糖類を分解する能力に優れており、海洋における炭素循環の理解を進める上で重要な手がかりを与えるものです。さらに、波の花に含まれる泡は、海水中の微生物や有機物を取り込

みながら海面で破裂することで、それらの粒子を大気中に放出する「エアロゾル」の発生源にもなります。これらの海洋由来エアロゾルは、雲形成や太陽光の反射に影響を与え、気候変動にも関わっているとされており、Oceaniferula spumae のように泡や粒子に付着して機能する微生物の存在は、海洋一大気間の物質交換や気候システムへの微生物の関与を考える上で

極めて重要です(図3)。

今後は、この新種がもつ多糖分解酵素の実際の機能解明や、海洋炭素フラックスへの寄与の定量化を進めるとともに、波の花やエアロゾルを通じた大気圏への微生物移動や雲形成への影響についても、観測・モデル・分子生物学的手法を統合した総合的な研究展開が期待されます。

なお本研究は、科学研究費補助金(課題番号: JP16H02562、JP22H00376)及び金沢大学環日本海域環境研究センター共同研究(採択番号: 19029、20022)のもとで実施されました。

図 3. Oceaniferula spumae の特徴から 推測される生態的役割

発表雑誌

International Journal of Systematic and Evolutionary Microbiology (2025年7月7日)

Oceaniferula spumae sp. nov., a novel Verrucomicrobiota bacterium, isolated from sea foam at Noto Peninsula, Ishikawa, Japan Huang, C., Jiang, C., Sato-Takabe, Y., Makabe-Kobayashi, Y., Tsukamoto, Y., Yoshizawa, S., & Hamasaki, K.

DOI: 10.1099/ijsem.0.006828

https://doi.org/10.1099/ijsem.0.006828

用語解説

注1 選択培養

多数の微生物が混在する試料の中から、特定の種類の微生物だけを増やすための培養法。栄養源の制限や抗生物質の添加により、目的の微生物が 育ちやすく、他の微生物が育ちにくい条件を設定して培養する

注2 ゲノム解析

生物が持つ全ての遺伝情報(=ゲノム)を読み取り、その生物が持つ物質や機能、他の生物との進化的な違いなどを理解するための解析手法