海洋生命システム研究系 # 海洋生態系科学部門 Division of Marine Life Science, Department of Marine Ecosystem Science 地球表面積の7割を占める広大な海には、多種多様な生物が生息し、互いに食う食われる関係や、共生、寄生などの関係を持ちながら生態系を構成しています。海洋生態系のしくみやその働きを知ることは、健全な地球環境を維持する第一歩です。海洋生態系科学部門では、海洋に生息する微生物、プランクトン、マイクロネクトン、ベントスを研究対象として、個体から群集レベルまでこれらの生物の生態や生理学的特徴を調べるとともに、海洋の物質循環や生態系の維持にどのような役割を果たしているかを探求しています。 In the vast ocean which covers 70% of the earth's surface, an enormous variety of living organisms constitutes the ecosystem representing diverse relationships such as predator-prey, symbiosis and parasitism. Understanding the structure and functioning of marine ecosystems is the first step of keeping the healthy environment of our planet. We study ecology and physiology of microbes, plankton, micronekton, and benthos and their roles in biogeochemical cycling and ecosystem functioning in the ocean and the earth's biosphere beyond. ## WEB page address https://sites.google.com/g.ecc.u-tokyo.ac.jp/marine-ecosystem-science https://sites.google.com/g.ecc.u-tokyo.ac.jp/ marine-ecosystem-science-en 兼務教授 小島 茂明 Professor KOJIMA, Shigeaki 海洋底生生物の進化と生態 Evolution and ecology of marine benthic organisms 准教授 西部 裕一郎 Associate Professor NISHIBE, Yuichiro 動物プランクトン生態学 Zooplankton Ecology 教授 津田 敦 Professor TSUDA, Atsushi 生物海洋学、プランクトン生態学 Biological Oceanography, Plankton Ecology 准教授 塩崎 拓平 Associate Professor SHIOZAKI, Takuhei 植物プランクトン生態学、極域海洋学 Phytoplankton Ecology, Polar Oceanography 教授 濵﨑 恒二 Professor HAMASAKI, Koji 微生物海洋学 Microbial Oceanography 助教 西村 昌彦 Assistant Professor NISHIMURA, Masahiko 微生物生態学 Microbial Ecology 底生無脊椎動物の生態と進化 Ecology and evolution of benthic invertebrates 助教 平井 惇也 Assistant Professor HIRAI, Junya 動物プランクトンの分子生態学 Zooplankton Molecular Ecology 兼務准教授 吉澤 晋 Associate Professor YOSHIZAWA. Susumu 海洋微生物学、微生物生態学 Marine Microbiology, Microbial Ecology 底生生物の初期生活史と生物地理 Early life history and biogeography of benthic animals # 海洋生態系科学部門 | Department of Marine Ecosystem Science 現在の主な研究テーマ Ongoing Research Themes # 浮遊生物グループ # ●動物プランクトンの種多様性・生物地理 動物プランクトン種は海洋漂泳区で優占し、既知種だけで7000種を超える多様なグループです。群集構造を迅速かつ網羅的に解明可能なメタバーコーディング法により、地球規模の動物プランクトンの種多様性・生物地理の把握を目指しています。また、メタバーコーディングに必須な遺伝子配列のデータベース整備のため、動物プランクトンの遺伝子データの充実を進め、分類体系の整理も行っています。 ●動物プランクトンに感染するウイルスの多様性と生態学的意義 動物プランクトンとウイルスは海洋生態系における重要なグループですが、これらの相互作用は理解が進んでいません。この未知なる多様性や生態学的意義を秘める動物プランクトンのウイルスの研究を進めています。動物プランクトンの個体群動態にウイルスが与える影響や、ウイルス感染に対する動物プランクトンの生理応答を分子生物学的手法により調べています。 #### ●沿岸性動物プランクトンの環境適応機構 海洋の沿岸域では生物を取り巻く環境は季節的、あるいはより 短い時間スケールで大きく変動します。このような変化に富む環 境に対して動物プランクトンはどのように適応しているのでしょ うか。動物プランクトンの生活史形質のうち、特に休眠に注目 し、その季節性や誘導要因の種内地理的変異を明らかにするこ とで、変動環境への適応機構やその進化的背景を理解するこ とを目指しています。 ## ●海洋におけるマイクロプラスチックの動態 プラスチックによる海洋汚染は地球規模での環境問題となっています。海洋に流入したプラスチックは紫外線や物理的な破砕によって微細化し、やがて沈降することで海洋表層から除去されると考えられていますが、その過程についての理解は進んでいません。海洋表層から海底堆積物に至るマイクロプラスチックの分布を世界の様々な海域において調べることにより、海洋におけるマイクロプラスチックの動態を明らかにする研究に取り組んでいます。 #### Marine Planktology Group - Diversity and biogeography of zooplankton: Marine zooplankton comprise an abundant and diverse group including >7,000 described species. We investigate diversity and biogeography of marine zooplankton in the global oceans using metabarcoding approach. In addition, we aim to deposit genetic data of important zooplankton species on public database for reference sequence libraries. - Diversity and ecological role of viruses infecting marine zooplankton: Zooplankton and viruses play a key role in marine ecosystems; however, their interactions have not been examined. We investigate impact of viral infections on population dynamics and physiological changes of marine zooplankton using molecular-based methods. - ●Environmental adaptation of coastal marine zooplankton: We investigate the life history strategy of coastal marine zooplankton to understand their adaptation to highly variable environments. In particular, we focus on interpopulation variation in phenological and physiological traits of zooplankton dormancy. - ●Dynamics of microplastic in the ocean: Microplastic pollution is an important issue for marine environment. We monitor the abundance and distribution of microplastics in various regions of the world's oceans. In addition, we investigate the sedimentation of microplastics through biological processes to understand its fate in the ocean. 休眠卵を産む海産カイアシ類 Marine planktonic copepods producing resting eggs ニューストンネットを用いたマイクロプラスチックの採集 Floating microplastic sampling using a neuston net # 海洋生態系科学部門 | Department of Marine Ecosystem Science 現在の主な研究テーマ Ongoing Research Themes # 微生物グループ ## ●海表面マイクロ層とエアロゾルの微生物動態 海表面マイクロ層 (sea surface microlayer: SML) は海の極表層1mm以下の厚さに相当する層を指し、大気と海洋の境界面にあたる領域です。海洋の生物活動による気候システムへのフィードバックを制御する鍵として、海表面マイクロ層とそこから生成するエアロゾルにおける微生物動態に注目し、独自のサンプリング装置と最新の環境DNA/RNA解析技術を駆使して、微生物群集の組成と機能を解析しています。 ### ●北極海・南極海における微生物生態に関する研究 極域は地球温暖化の影響を最も受けやすい海域であり、近年、その影響で海氷融解が進んでいます。特に北極海では海 氷減少が顕著で、今世紀半ばには夏季の海氷域が消滅すると 予測されています。海氷のような巨大な構造物が海からなくな ると、当然そこにすむ生物にも大きな影響があります。このよ うな環境変化に真っ先に影響があるのは食物連鎖のピラミッドの底辺に位置する植物プランクトンや細菌、古細菌です。 我々の研究室では極域に生息するこれら微生物の機能や生 態学的特徴と環境変化への応答について、現場観測ベース の研究で明らかにすることを目指しています。 #### ●海洋微生物の持つ新規光受容体に関する統合的研究 地球生命圏は太陽光に由来するエネルギーを基盤に成り立っています。近年、大規模な遺伝子解析から、クロロフィルとは異なる光受容体(微生物型ロドプシン)を持つ微生物が海洋表層に普遍的に存在することが分かってきました。我々の研究室では、最新の遺伝子解析技術や分子生物学的手法を駆使することで未だ謎の多いロドプシン保有微生物の生態や進化を解き明かす研究を行っています。 ### ●未知海洋微生物の分離培養と新種記載 海洋には膨大な数の未知微生物が存在しています。我々の研究室では、未知微生物の分離培養やゲノム解析を通して、新しい微生物種の提案や新規生物機能の探索を行っています。 #### Marine Microbiology Group - •Microbial dynamics in sea surface microlayer and sea spray aerosols: The sea surface microlayer (SML) refers to the layer corresponding to the thickness of the extreme surface layer of the sea of 1 mm or less, and is the region corresponding to the boundary between the atmosphere and the ocean. Focusing on the microbial dynamics in the ocean surface microlayers and the aerosols produced from them as the key to controlling the feedback of marine biological activity to the climate system, we make full use of our unique sampling equipments and the latest environmental DNA/RNA analysis technology to analyze the structure and function of microbial communities. - •Microbial biogeochemistry in the polar oceans: In recent years, global warming has been particularly pronounced in polar regions, accelerating the melting of sea ice. The sea ice reduction will have a great impact on the polar organisms, especially phytoplankton, bacteria, and archaea, which are at the bottom of the trophic pyramid. We aim to elucidate the functions and biogeochemical roles of polar microorganisms and their responses to the environmental changes through fieldbased observations. - Novel photoreceptor proteins in marine microbes: Almost all biological processes on Earth are driven by solar energy. Recently, large-scale metagenomic analyses have revealed that microbes with novel photoreceptors (called rhodopsins) are ubiquitous in the ocean surface layer. We aim to elucidate the ecology and evolution of rhodopsin-possessing microbes applying bioinformatics and molecular biological techniques. - •Isolation of novel marine bacteria and proposal of new species: A vast number of undescribed microbes inhabit the oceans. Through isolation and genome analysis of marine microbes, we propose new microbial species and search for novel biological functions. 珪藻細胞 (赤色) と活発に増殖する海洋細菌 (緑色) の 蛍光顕微鏡画像 Fluorescence micrograph of diatom cells (red) and actively growing bacteria (green) 南極観測船 「しらせ」 Polar research icebreaker "Shirase" 単離培養した海洋細菌のコロニー Colonies of a cultured marine bacterial isolate # 海洋生態系科学部門 | Department of Marine Ecosystem Science 現在の主な研究テーマ **Ongoing Research Themes** # 底生生物グループ #### ●熱水や海溝域を含む深海におけるベントスの進化と生態 深海底の熱水噴出域や海溝の最深部には、それぞれの環境に 適応した固有動物群が生息しており、深海生物の進化を理解 する上で絶好の研究対象です。私たちは、DNA塩基配列と形 態の比較に基づき、貝類を中心とした様々な深海性動物の起 源と進化、分布、集団構造などを検討しています。またその分 散機構を理解するために、プランクトン幼生の飼育を含む初 期生態研究を実施しています。 #### ●日本海の海洋生命史 日本海は、狭く浅い海峡によって周囲の海域から隔てられた 半閉鎖的な縁海です。最終氷期の最盛期には、海水準の低下 と大陸からの多量の淡水流入により環境が悪化し、多くの海 洋生物が絶滅したとされています。私たちは、底魚類や巻貝類 の遺伝的解析により、こうした日本海の環境変動や近年の人 間活動に起因する気候変動が生物の進化や集団構造にどの ような影響を与えてきたかを検討しています。 #### ●海岸動物の系統地理学 南北に細長い日本列島や琉球列島の海岸に住む動物のうち、 浮遊幼生期の短い種や直達発生を行う種は、その分散能力 の低さから、地域集団が他の集団から遺伝的に分化する傾 向がみられます。そうした遺伝的分化のパターンを調べること で、現在の地形や海流、また過去の海洋環境変動との関係を 把握し、将来の環境変動の影響を評価するための研究を進め ています。 ## ●両側回遊性貝類の自然史 川にすむ巻貝のなかには、幼生期に海へ出て分散する両側回 遊型の生活環をもつものがあります。インド・西太平洋の低 緯度域島嶼では、このような両側回遊種が卓越し、また高い 種多様性を示します。私たちは、熱帯島嶼における河川動物 相の成立と維持機構の解明にむけ、これら巻貝の分布、遺伝 的·形態的多様性、種分類、系統進化、行動·生態、初期発生 と分散について多角的な研究を進めています。 #### **Marine Benthology Group** - Evolution and ecology of deep-sea invertebrates including hot vent and trench endemics: Deep-sea environments including hydrothermal vent fields and hadal trenches harbor endemic and highly adapted animal communities, which provide unique opportunities to investigate evolutionary processes, adaptation and dispersal in the ocean. Our current studies on deep-sea invertebrates include genetic population analyses and speciesand higher-level phylogenies based on the comparison of DNA sequences and morphological traits. We are also investigating the early development and dispersal mechanisms of the vent endemics and other deep-sea species by rearing pelagic larvae and analyzing the chemical composition of gastropod shells. - Evolutionary history of benthic animals in the Sea of Japan: The Sea of Japan is a semi-closed sea connected with neighboring seas by shallow and narrow straits and thought to have experienced environmental deterioration during the last glacial maximum. In order to evaluate the effects of climate changes on marine ecosystems, we are comparing the genetic population structures of various benthic animals between the Sea of Japan and neighboring seas. - ●Phylogeography of coastal animals: Benthic animals often show limited dispersal ability with a short pelagic larval period or direct development, and hence genetic population differentiation. We are investigating their population structures along the coasts of Japan to evaluate the effects of past and future environmental changes. - Natural history of amphidromous snails: Many snail species in tropical coastal streams have wide geographic ranges thanks to their amphidromous life cycle. Hatched swimming larvae are swept downstream to the ocean where they spend weeks to many months; metamorphosis occurs at brackish reaches and young snails crawl upstream where they reproduce. We aim at unraveling their ecology and evolution from genetic, morphological, behavioral and ontogenetic perspectives for a global understanding of insular stream ecosystems. 研究船による深海ベントスの採集 Sampling of deep-sea benthos on research vessel # 海洋生命システム研究系 # 海洋生命科学部門 # Division of Marine Life Science, Department of Marine Bioscience 海洋生命科学部門は、海洋生物の進化の過程を解き明かすとともに、回遊現象や海洋環境への適応機構など、海洋における様々な生命現象の不思議を解明することに挑戦しています。分子海洋生物学グループでは、海洋における様々な生命現象やその進化を分子生物学的観点から明らかにしています。生理学グループでは、環境適応や繁殖戦略など海洋環境に生きるためのしくみについて、主に細胞・個体レベルでの統合的理解を目指しています。行動生態計測グループは、回遊・繁殖など様々な行動メカニズムとその進化プロセスを、バイオロギングを主に用いた各種野外調査を通して理解します。これらの成果を統合的に理解することで、海洋生命圏の包括的理解を目指しています。 The Department of Marine Biosciences works to understand the marine biosphere comprehensively through investigations at molecular, cellular, organismal, and population levels, with cooperation among the three groups. The Molecular Marine Biology Group investigates molecular mechanisms of various activities of marine organisms and their evolutionary processes. The objective of the Physiology Group is to understand physiological mechanisms of life phenomena such as environmental adaptation, growth, stress response and reproduction at cellular and organismal levels. The Behavioral Ecology and Observation Systems Group uses biologging and other field techniques at population level to uncover the behavioral mechanisms and evolutionary processes of marine life. WEB page address 生理学グループ http://physiol.aori.u-tokyo ac.jp/seiri/index.html 分子海洋生物学グループ http://darwin.aori.u-tokyo ac.jp/index.html 行動生態計測グループ http://fishecol.aori.u-tokyo ac.jp/top/ 教授 佐藤 克文 Professor SATO. Katsufumi 行動生態学、環境学 Behavioral Ecology, Environmental Studies 准教授 神田 真司 Professor KANDA. Shinii 魚類の神経内分泌学 Fish Neuroendocrinology 分子海洋生物学 Molecular Marine Biology 助教 高木 亙 Assistant Professor TAKAGI, Wataru 魚類生理学 Fish Physiology 教授 兵藤 晋 Professor HYODO, Susumu 魚類の生理生態学 Fish Ecophysiology 助教 青木 かがり Assistant Professor AOKI, Kagari 鯨類の動物行動学および行動生態学 Ethology and Behavioral Ecology of Cetaceans 准教授 新里 宙也 Associate Professor SHINZATO, Chuya サンゴ礁ゲノム科学 Coral Reef Genomics 助教 高木 俊幸 Assistant Professor TAKAGI, Toshiyuki サンゴホロビオントの共生生物学 Symbiology of Coral Holobiont 准教授 坂本 健太郎 SAKAMOTO, Kentaro 動物行動学、生理生態学 Animal behavior, Physiological Ecology 助教 #上 潤 Assistant Professor INOUE, Jun 分子系統学 Molecular Phylogenetics # 海洋生命科学部門 | Department of Marine Bioscience #### 現在の主な研究テーマ Ongoing Research Themes # 生理学グループ - ●海という環境への適応の仕組みについて、軟骨魚(サメ・エイ・ギン ザメ)や真骨魚(特にサケ・メダカ)などに注目し、遺伝子から個体レ ベルにいたる多様な手法を用いて明らかにしています。 - ●回遊魚などに見られる広い塩分耐性(広塩性)の仕組みを、狭塩性 魚と比較することにより解明しています。オオメジロザメなど、フィールド での生息環境調査も行い、包括的な生理学的研究を目指します。 - ●環境適応機構の普遍性や多様性を、系統進化や個体発生の観点から明らかにします。 - ●体液調節、繁殖機能の調節に関わる視床下部・脳下垂体のホルモンによる全身制御メカニズムを解明します。 - ●ゲノム・トランスクリプトーム情報とバイオインフォマティクスを利用して、環境適応に重要な遺伝子を見つけています。 - ●遺伝子工学を利用して各種遺伝子の導入や破壊を行い、その機能を個体レベルで解明しています。 - ●これまで遺伝子操作が難しかった非モデル動物にも遺伝子改変 技術を導入し、進化の仮説をより直接的に証明するアプローチを 目指します。 広塩性オオメジロザメ (左上)、卵殻内のゾウギンザメ胚 (左下)、GFPで可視化したニューロン (右上)、パッチクランプによる細胞活動の検出 (右下) Euryhaline bull shark (upper left), elephant fish embryo (lower left), neurons visualized with GFP (upper right), cellular activity examined by patch-clamp recording (lower right) #### **Physiology Group** - Analysis of mechanisms for osmoregulation and reproduction in cartilaginous fish (sharks, rays and chimaeras), teleosts (salmonids and medaka), and cyclostomes (lampreys and hagfishes) from single cellular physiology to organismal physiology to understanding unity and diversity of adaptation and reproductive mechanisms. - Analysis of euryhaline adaptation mechanisms of migratory fish. Field survey of euryhaline bull shark is in progress. - Application of transgenic and genome editing techniques to model and non-model animals. #### 分子海洋生物学グループ - ●深海(とくに熱水噴出域)、潮間帯、河口域の環境への生物の 適応機構とその進化 - ●水圏生物 (とくに付着生物) の生態学的地位を支える分子機構 とその進化 - ●環境適応機構の進化と生物多様性との関係 - ●サンゴと褐虫藻の生理や共生に関わる分子機能の解明と、そのサンゴ礁の保全・再生への活用 - サンゴー微生物間の相互作用メカニズムの解明と、それらの病気予防・管理への応用 - ●サンゴ礁等の水圏生態系の遺伝的多様性の理解と保全 - ■メダカ近縁種やイガイ類の環境応答や環境モニタリング技術の研究 ## Molecular Marine Biology Group - Adaptation mechanisms and evolution of living organisms in the deep sea (e.g., hydrothermal vents), intertidal zones, estuaries - Molecular mechanisms determining ecological niches and their evolution in aquatic organisms, including sessile invertebrates - Relationship between the evolution of environmental adaptation mechanisms and biodiversity - Molecular mechanisms involved in physiology and symbiosis of corals and zooxanthellae, and their applications to conserve and regenerate coral reefs - Molecular mechanisms of coral-microbe interactions, and their applications for disease prevention and management - Understanding and conservation of biodiversity of aquatic ecosystems, including coral reefs - Molecular responses to the environment in Asian medaka fishes and mussels, and their applications to environmental monitoring 深海性二枚貝(左下)とその飼育装置(左上)。 サンゴ礁(右上)とサンゴのポリプ(右下) Deep-sea bivalves (lower left) and the rearing apparatus (upper left); Coral Reefs (upper right) and close-up of coral polyps (lower right) # 海洋生命科学部門 | Department of Marine Bioscience 現在の主な研究テーマ Ongoing Research Themes # 行動生態計測グループ - ●マアナゴ、ウナギ、カジキ類等の魚類を対象とした行動生理研究 - ●ウミガメ類の回遊生態および生活史研究 - ●オオミズナギドリ、アホウドリ、ヨーロッパヒメウなど、海鳥類の行動生理研究 - ●海生哺乳類のバイオメカニクスと採餌行動の研究 - ●新たなバイオロギング手法の開発 ### **Behavioral Ecology and Observation Systems Group** - Physiological behavior of fish (conger eel, eel, marlin, etc.) - Migration and life history of sea turtles in relation to their physiological constraints - Behavioral ecology of seabirds (streaked shearwater, albatross, European shag, etc.) - Improvement and development of biologging tools - Biomechanics and foraging activities of marine mammals オオミズナギドリの腹部に取り付けたビデオカメラで撮影された、オオミズナギドリがカタクチイワシを捕らえた瞬間の映像 Images acquired from an animal-borne video camera of a streaked shearwater capturing a Japanese anchovy under マッコウクジラに長いポールを用いて吸盤タグ(白丸)を取り付けたところ。 吸盤タグには、動物カメラや行動 記録計、回収のための発信機が 取り付けられている。時間が経つ と自然と剥がれ落ち、海面に浮く 仕組みになっている Deployment of a suction-cup attached tag (white circle) to a sperm whale using a long pole. The tag, which consists of an animal borne-data logger, camera, and transmitter, automatically detaches from the whale and floats to the ocean surface. # 海洋生命システム研究系 # 海洋生物資源部門 # **Division of Marine Life Science**, **Department of Living Marine Resources** 市場に水揚げされるイワシ類などは、毎日安定して供給されて いるように見えます。しかし、やはり自然の恵み、あり余るほど獲 れるときもあれば、まったく獲れないときもあります。生命活動 と生物生産の場である海洋生態系は非定常系であり、生態系の 変動に対応して生物資源が大きく変動します。海洋生物資源部 門では、生物資源をとりまく環境変動機構の研究(環境動態)、 資源変動の生物学的基礎としての繁殖生態と初期生態の研究 (資源生態)、生物資源を持続的に利用するための資源評価・ 管理の研究(資源解析)、海洋環境変動に対する生物の応答研 究 (生物海洋学)、海洋生態系構造と海洋生物資源動態の解明 (海洋生態系変動)を行っています。 to the market. In reality, their populations may be superabundant in some years and extremely scarce in other years. Marine populations fluctuate in response to the ocean ecosystem variations. The research activities of the Department of Living Marine Resources focus on the mechanisms linking physical environment variability and population fluctuations (Fisheries Environmental Oceanography), reproductive and early life ecology of fishes and shellfishes as biological bases of the fluctuations (Biology of Fisheries Resources), stock assessment and fisheries management for sustainable use of living marine resources (Fish Population Dynamics), response mechanisms of aquatic organisms to global environmental change (Biological Oceanography), and structure of marine ecosystem and variability in living marine resources (Ecosystem Research). Commercial fishes such as sardines seem to be steadily supplied WEB page address http://lmr.aori.u-tokyo.ac.jp/ http://lmr.aori.u-tokyo.ac.jp/indexe.htm 兼務教授 木村 伸吾 KIMURA, Shingo 水産海洋学、水圏環境学 Fisheries Oceanography, Aquatic Environment 教授 伊藤 進一 ITO, Shin-ichi 海洋生態系の気候変動影響 Climate change impacts on marine ecosystem 教授 森田 健太郎 MORITA, Kentaro 魚類の生活史多様性と個体群過程 Life history diversity and population processes in fishes 平松 一彦 准教授 HIRAMATSU, Kazuhiko Associate Professor 水產資源評価,管理 Fisheries stock assessment and management 小松 幸生 兼務准教授 Associate Professor KOMATSU, Kosei 海洋生態系、海面境界過程 Marine ecosystem, Air-sea interface 准教授 伊藤 幸彦 Associate Professor ITOH, Sachihiko 海洋物理学、水産海洋学 Physical Oceanography, Fisheries Oceanography 准教授 岩田 容子 Associate Professor IWATA, Yoko 海洋生物の生活史 Life history of marine organisms 助教 猿渡 敏郎 Assistant Professor SARUWATARI, Toshiro 魚類生態学 Fish ecology 入江 貴博 Assistant Professor IRIE. Takahiro 進化生態学に関する理論研究、表現型と遺伝 子型の種内変異 Theoretical studies of evolutionary ecology, Intraspecific variations of phenotypic and genetic traits 助教 松村 義正 Assistant Professor MATSUMURA, Yoshimasa 海洋微小スケール素過程の数値モデリング Numerical modeling of small scale oceanic processes 板倉 光 Assistant Professor ITAKURA, Hikaru 環境変動に対する生物応答、魚類生態学 Response mechanisms of aquatic organisms to environmental change, Fish ecology 萩原 聖士 特任講師 Project Lecturer HAGIHARA, Seishi 魚類生理生態学、生殖 Fish physiological ecology, Reproduction 特任助教 堤 英輔 Project Assistant Professor TSUTSUMI, Eisuke 海洋物理学 Physical Oceanography 42 # 海洋生物資源部門 | Department of Living Marine Resources ### 現在の主な研究テーマ **Ongoing Research Themes** # 海洋環境の動態 - ●イワシ類、マアジ、サンマ等海洋生物資源の変動機構および魚 種交替現象の解明 - ●地球温暖化が海洋生態系および海洋生物資源の変動に与え る影響の解明 - ●黒潮、黒潮続流、黒潮親潮移行域における生物地球化学循 環過程の解明 - ●環境DNAを用いた魚類分布特性の解明 - ●新世代海洋観測システム・海洋生態系モデルの開発 - ●マイクロプラスチックの動態把握 #### **Fisheries Environmental Oceanography** - •Fluctuation and species alternation mechanism of important living marine resources - ●Impacts of global warming on marine ecosystem and fluctuation in living marine resources - Physical processes related to biogeochemical cycles in the Kuroshio and its adjacent regions - Fish distribution pattern inferred from eDNA - Development of new-generation observation system and marine ecosystem models - Dynamics of microplastic transport in the ocean 魚類 (サンマ) 成長-回遊 モデルを用いた温暖化影 響評価実験 Numerical experiment to evaluate climate change effects on fish (Pacific saury) using a fish growth migration model 大槌湾の風と波浪のリアル タイムモニタリング Real-time monitoring of wind and wave in Otsuchi Bay # 海洋生態系の変動 - ●魚類の生活史・個体群動態に関する研究 - ●海洋前線 (潮目・潮境) に関する研究 - ●沿岸域物理環境モデリング - ●沿岸-外洋移行帯モデリング # **Ecosystem Research** - Life history and population dynamics of marine fish - Marine and coastal fronts - Coastal circulation modeling - Coast-ocean transition zone modeling - a.三陸沖の津軽暖水・親潮間に形成された前線の3次元構造 - b.個体ベースモデルを用いたサンマの輸送・回遊様式 - c.黒潮によるマアジの輸送過程の模式図 - d.白鳳丸を用いたUnderway CTD観測 - e.冷水接岸時シミュレーションにおける海面付近と海底付近の水温分布 - f. 水平 500 m 格子モデルにおける海面相対渦度スナップショット - a:3D structure of a front between the Tsugaru Warm Current and the Oyashio b:Transport and migration patterns of Pacific saury using an Indibidual Based - c: Schematic diagram of the transport of Jack mackerel by the Kuroshio - d:Underway CTD observation (R/V Hakuho-maru) e:Surface and bottom temperature distribution in Otsuchi Bay reproduced in the model when cold water approaches to the coast - f: Snapshot of surface relative vorticity predicted by a 500 m-grid model # 海洋生物資源部門 | Department of Living Marine Resources ### 現在の主な研究テーマ **Ongoing Research Themes** ### 海洋生物資源の解析 - ●サケ科魚類の保全生態学と生活史多様性に関する研究 - ●人工ふ化放流魚と野生魚の資源管理に関する研究 - ●海洋生物の資源評価と管理に関する研究 - ●海洋生物の進化生態に関する理論研究 - ●応用統計学と地球化学的手法を駆使した石灰化の研究 - ●中立遺伝子情報を用いた個体数推定法の開発 ### **Fish Population Dynamics** - Conservation ecology and life-history diversity of salmonids - Resource management of hatchery and wild fishes - Management and assessment of marine living resources - Theoretical studies of evolutionary ecology - •Statistical analysis of geochemical data on biomineralization - Population size estimation using neutral genetic information 厳冬期に遡上する野生の冬サケ(後期群) Winter-run wild chum salmon, Oncorhynchus keta ## 海洋生物資源の生態 - ●貝類・甲殻類・棘皮動物などの底生生物の生態学的研究 - ●藻場や干潟の生物群集・食物網構造の研究 - ●イカ類の多様な繁殖様式の進化に関する研究 - ●海洋環境の個体群特性への影響に関する研究 - ●地域的有用水産資源を形成する魚類の生活史に関する研究 - ●硬骨魚類の初期生態に関する研究 ## **Biology of Fisheries Resources** - Ecology of benthic organisms, such as mollusks, crustaceans and echinoderms - Community and food-web structures in seaweed beds and tidal - Evolution of reproductive strategy in squid - ●Effect of environmental condition in life history traits in - ●Life history of fishes comprising local fisheries resources - Early life history of Teleosts 藻場の生物群集調査 SCUBA sampling of invertebrate community on sea-grass 野外産卵場におけるヤ リイカの卵塊 Egg mass of squid Heterololigo bleekeri at natural spawning ground # 海洋生物資源部門 | Department of Living Marine Resources ### 現在の主な研究テーマ Ongoing Research Themes # 海洋生物資源の環境 - ●ニホンウナギ幼生の輸送と摂餌生態 - ●淡水・汽水域におけるウナギ成魚の生息環境と行動 - ●黒潮が水産生物の資源量・来遊量に及ぼす影響 - ●地球温暖化に伴う水産生物の生理生態的応答 - ●沿岸域に生息する水産生物の再生産機構 - ●海洋保護区の評価と関連した底生生物の幼生分散機構 - ●内湾流動環境のモデル化 - ●地球環境変動が資源変動・回遊行動に与える影響 Fig.1 Fig.2 #### **Biological Oceanography** - The feeding ecology and transport of Japanese eel larvae - The habitat, environment, and behavior of Japanese eel adults in freshwater regions - The effects of Kuroshio on stock abundance and migration of the species that are important to fisheries - Ecological and physiological responses of marine organisms related to global warming - ●The reproduction mechanisms of coastal marine organisms - Larval dispersal mechanisms of benthos related to the evaluation of marine protected areas - Modeling of the physical environment of small-scale bays - Effects of global environmental changes on stock abundance and migration Fig.3 Fig.4 ニホンウナギのレプトセファルス幼生(図1)と数値実験で求めた幼生の輸送経路(図2)。 エルニーニョが発生した年(図2左図)は、幼生がフィリピン東部から黒潮にうまく乗ることができずに、エルニーニョ非発生年(図2右図)に比べて、ニホンウナギが生息できないミンダナオ海流域に数多くの幼生が輸送される。事実、エルニーニョの年にはシラスウナギの日本沿岸への来遊量が減少する。幼生はシラスウナインと変態し、その後に黄ウナギ(図3)へと成長するが、汽水域・淡水域での生息環境が成長・生残に大きな影響を及ばす。英国におけるムール貝の最大生産地であるメナイ海峡(図4)。 The Japanese eel leptocephalus (Fig.1) and its larval transport from the spawning ground in the North Equatorial Current, reproduced by numerical simulation (Fig.2). Transport rate of the Japanese eel larvae along the Kuroshio is less than that along the Mindanao Current in an El Niño year (Fig.2, left panel). Yellow eel (Fig.3). Glass eels turn into yellow eels, and the freshwater environment affects their growth and survival. The Menai Strait - largest mussel producing area in the UK (Fig.4).