東京大学大気海洋研究所 AORI 2011 要覧 | CATALOG # CONTENTS # 2011 ATMOSPHERE AND OCEAN RESEARCH INSTITUTE THE UNIVERSITY OF TOKYO P2 # 要覧 | CATALOG 沿革 History 機構 Organization 委員会 Committees 教職員 Staff 共同利用·共同研究拠点 Joint Usage / Research Center 教育システム Educational System 研究内容 **Research Contents** P65 # 年報 | ANNUAL REPORT 国際協力 **International Cooperation** 共同利用研究活動 **Cooperative Research Activities** 教育活動 Educational Activities 予算 Budget 研究業績 Publication List # はじめに | FOREWORD 2011年3月11日に発生した東日本大震災では、地震、津波、原子力発電所の事故による 未曾有の被害が生じました。尊い命を失われた数多くの方々に深い哀悼の意を表しますと 共に、被害に遭われた皆様に心よりお見舞い申し上げます。 今回の震災は、我々人類の地球に関する知識が現在もなお不十分であることを如実に示 すと共に、防災科学の観点からも多くの厳しい教訓を残しました。岩手県大槌町にある当 所附属国際沿岸海洋研究センターも、壊滅的な被害を受けました。我々が今まず行うべき は、個人としてまた研究所として被災地の救援や復興の支援に力を尽くすことだと思いま す。その上で、マグニチュード9.0という巨大地震とそれに伴う地殻変動や誘発地震、津波で 破壊された生態系の回復過程、大気や海に放出された放射性物質の拡散とそれにもとづ く大気・海洋の循環や物質循環過程の解明など、この災害に遭遇した我々が後世に残すべ き重要な課題に真摯に取り組むことが、我々科学者に課せられた責務であると思います。 大気海洋研究所の特徴は、大気と海洋、そしてそこに育まれる生物、これらすべてに関 する専門家が揃っていることです。当研究所の使命は地球の誕生から現在に至る海洋・大 気・地球生命圏の進化や変動のドラマ、そしてこれらの複雑なメカニズムを解き明かし、地 球環境と人類・地球生命圏の未来を考える科学的基盤を得ることですが、今回の震災に よって生じた新たな研究課題に対しても、当研究所の特徴を活かした貢献を行うべきと考え ています。もちろん、これらの課題への取り組みは所員だけで達成できるものではありませ ん。学術研究船「淡青丸」「白鳳丸」を始めとする様々な施設や数値モデルの共同利用・ 共同研究を通して、国内外の多くの研究者の皆様と連携しながら、これらの重要な課題の 解明と将来を担う人材の育成に取り組んで行きたいと考えています。皆様のご支援・ご協力 をお願いいたします。 The unprecedended Great East Japan Earthquake of 11 March 2011 caused a huge tsunami and a serious nuclear power plant accident, perhaps Japan's worst ever disaster. We would like to express our deepest regrets at the loss of the precious lives, and offer our sincerest condolences to those affected by this tragedy. The disaster clearly demostrated there are still many things about our earth of which we still know so little, and has left us many severe lessons regarding disaster prevention. This disaster also seriously damaged one of our critical research facilities, the International Coastal Research Center (ICRC) located in Otsuchi town, Iwate Prefecture. The first action that we must take, both as individuals and as an institution, is to commit to the recovery of the damaged areas. As a leading scientific institution, however, it is also our responsibility to commit ourselves to investigating and solving the mechanism that caused such a massive earthquake of magnitude 9.0 with crustal changes and aftershocks. We must also consider the processes of the ecosystem recovery, as well as the processes of the dispersion of radioactive materials into the atmosphere and oceans. It should be noted that we have a cadre of scientific experts at the Atmosphere and Ocean Research Institute (AORI) already actively involved in researching a wide variety of issues related to the atmosphere and the oceans, and to the living organisms who make the atmosphere and the oceans their home. AORI's mission is to clarify the evolution of and changes in the atmosphere, oceans and biosphere from the birth of the Earth to the present, to understand their complicated mechanism, and to obtain a solid scientific base for considering the future of the global environment, human beings, and biosphere in general. In addition to this mission, AORI contributes to fully utilizing our expertise to addressing the new research issues created by this It is clear that the challenges for solving these scientific issues cannot be accomplished only by the members of AORI. We want to collaborate with researchers both in Japan and around the world, through joint-usage of various facilities including research vessels Tansei Maru and Hakuho Maru, and through sophisticated numerical models to solve these important issues and to grow qualified researchers who will contribute to the world of tomorrow. Your support and cooperation are greatly appreciated. 東京大学大気海洋研究所・所長 新野 宏 Director of AORI NIINO, Hiroshi # 沿革 | HISTORY as of October 1, 2011 1958. 1 ■ 日本海洋学会と日本水産学会の連名で海洋総合研究所 設立について日本学術会議に建議 The Oceanographic Society of Japan and the Society of Fisheries Sciences jointly proposed establishment of the Ocean Research Institute. - 4 日本学術会議において研究所を設置すべきことを議決 Resolution on establishment of the Ocean Research Institute adopted by the Science Council of Japan. - 8 科学技術審議会における審議に基づき、文部省に所属することが適当である旨、科学技術庁長官より文部大臣に通知。文部省は、国立大学研究所協議会において設置具体案を審議 The Minister of the Science and Technology Agency recommended to the Minister of Education and Culture that the new Ocean Research Institute be established in the Ministry of Education and Culture. The Ministry of Education and Culture formulated detailed plans for establishing the Ocean Research Institute. 1962. 4 ■ 海洋研究所、東京大学に附置。海洋物理部門、海底堆積部門、研究船、設置 ORI, the University of Tokyo, established. Ocean Circulation and Marine Geology groups established, and plans for research vessels formulated. - 1963. 4 資源解析部門、プランクトン部門設置 Fish Population Dynamics and Marine Planktology groups established. - 6 研究船淡青丸竣工 Original R/V Tansei Maru commissioned. - 1964. 4 海洋無機化学部門、海洋生物生理部門設置 Marine Inorganic Chemistry and Physiology groups established. - 1965. 4 海底物理部門、資源生物部門設置 Submarine Geophysics and Biology of Fisheries Resources groups established. - 1966. 4 海洋気象部門、海洋微生物部門設置 Dynamic Marine Meteorology and Marine Microbiology groups established. - 1967. 3 研究船白鳳丸竣工 Original R/V Hakuho Maru commissioned. - 6 海洋生化学部門設置 Marine Biochemistry group established. - 1968. 4 漁業測定部門設置 Behavior, Ecology, and Observations Systems group established. - **1970. 4** 海洋生物生態部門設置 Benthos group established. - 1972. 5 資源環境部門設置 Fisheries Environmental Oceanography group established. - 1973. 4 大槌臨海研究センター設置 Otsuchi Marine Research Center established. - 1975. 4 ★ 大洋底構造地質部門設置 Ocean Floor Geotectonics group established. - 1982.10 ※ 淡青丸代船 (469t, 1995年規格変更により606t) 竣工 Replacement R/V Tansei Maru commissioned. **1988. 4** ■ 日本学術振興会拠点大学方式によりインドネシア国との 学術交流開始 > Cooperative research with Indonesia initiated through the Core University Program of the Japan Society for the Promotion of Science. 1989. 3 測地学審議会建議に「気候システム研究体制の整備」が うたわれた The Geodesy Council stated a need for planning a research organization focused on the climate system. - 5 白鳳丸代船 (3991t) 竣工 Replacement R/V Hakuho Maru commissioned. - 7 単術審議会建議に「新プログラム方式による重点課題 (アジア太平洋地域を中心とした地球環境変動の研究) | が取り上げられた "Studies on variations of global environment with a central target in Asian Pacific Regions" was proposed as a priority research project in the "New Program" by the Science Council. - **1990. 6** 海洋分子生物学部門設置 Molecular Marine Biology group established. - 12 新プログラム方式による重点課題を推進するために、東京大学に全国共同利用施設として気候システム研究センターが設置されることとなった For the further growth of the priority research project in the "New Program" proposed by the Science Council, the establishment of the Center for Climate System Research (CCSR) at the University of Tokyo was finalized as an institute for national collaboration. 1991. 4 ■ 東京大学理学部に気候システム研究センター設立準備室 が設置 The Center's preparation office opened in the Faculty of Science at the University of Tokyo. 東京大学気候システム研究センターが5分野の研究部門 をもって設置され、東京大学理学部7号館で発足。時限 10年(2001年3月31日迄) CCSR, comprised of 5 research sections, was established. The facilities of the center were set up in the Faculty of Science's Seventh Building at the University of Tokyo (Active until March 31, 2001). - 10 寄付研究部門(グローバル気候学)を設置(1996年9月迄) The Endowed Research Division (Global Climatology) was established (Active until September 1996). - 1992. 2 気候システム研究センター建物 (第1期工事631m²) が目 黒区駒場4-6-1に完成、移転 The Center moved to the new building (First construction: 631 m²) in the Komaba Campus of the University of Tokyo (Komaba, Meguro-ku, Tokyo). - 1993. 3 気候システム研究センター建物第2期改修工事302m²が完成 The building at the center was expanded (Second construction: 302 m²). - 1994. 6 海洋科学国際共同研究センター設置 Center for International Cooperation established. - 1997. 4 **|** 寄付研究部門 (グローバル気候変動学) を設置 (2000年3月迄) The Endowed Research Division (Global Climate Variability) was established (Active until March 2000). 1999. 3 外部評価が行われた External Evaluation was performed. ■大気海洋研究所 (AORI) [■ 気候システム研究センター (CCSR) ■ 海洋研究所 (ORI)] #### 2000. 3 寄付研究部門を終了 The Endowed Research Division was closed. - 4 📕 16部門を6部門16分野に改組。海洋環境研究センター設置 ORI internally reconstituted into six research departments and three research centers, including the newlyestablished Center for Environmental Research. - 2001. 4 気候システム研究センター (第2世代) が、6研究分野を もって発足。時限10年(2011年3月31日迄) The Center for Climate System Research (2nd generation) was established with 6 research sections (Active until March 2011). - 4 新領域創成科学研究科・海洋環境サブコース設置 Graduate School of Frontier Sciences, Sub-division of Marine Environmental Studies established. - 2003. 4 大槌臨海研究センターを国際沿岸海洋研究センターに改 Otsuchi Marine Research Center reorganized and renamed the International Coastal Research Center. - 2004. 4 国立大学法人化により、国立大学法人東京大学の全学セ ンターのひとつとして気候システム研究センターが置かれた Upon the reorganization of The University of Tokyo as a National University Corporation, CCSR was reestablished as one of the Shared Facilities (Open to all scholars in Japan). - 4 東京大学の国立大学法人化に伴い、東京大学海洋研究 所の組織, 運営形態を改組 海洋環境研究センターを先端海洋システム研究センター 研究船淡青丸及び白鳳丸が独立行政法人海洋研究開発 機構へ移管 The University of Tokyo transformed into a National University Corporation incorporated as The University of Tokyo; Ocean Research Institute restructured accordingly. Center for Environmental Research reorganized and renamed the Center for Advanced Marine Research. R/V Tansei Maru and R/V Hakuho Maru operations transferred to the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). - 2005. 3 帕キャンパス総合研究棟(千葉県柏市柏の葉5-1-5)へ移転 The Center moved to the General Research Building in the Kashiwa Campus (Kashiwanoha, Kashiwa, Chiba). - 2006. 4 新領域創成科学研究科の組織改組に伴い自然環境学専 攻を設置、その下に3つの基幹講座と3つの研究協力分野 から成る海洋環境学コースを新たに発足 Graduate School of Frontier Sciences was reconstituted to establish Department of Natural Environmental Studies in which Course of Marine Environmental Studies, including three core programs and three cooperative programs, started. - 11 海洋研究連携分野<生物圏環境学>設置 Marine Research Linkage group <Biosphere Environment> established. - 2009. 3 海洋アライアンス連携分野 設置 Ocean Alliance Linkage established. - 2010. 3 集端海洋システム研究センター廃止
Center for Advanced Marine Research was abolished. - 中野キャンパス閉鎖 Nakano Campus was closed. #### 柏キャンパスに移転 ORI moved to a new building in Kashiwa Campus. ■ 気候システム研究センターとの統合に伴い組織の大幅な ORI made major reorganizations along with integration with CCSR. ■ 6部門を海洋地球システム研究系(3部門)と海洋生命シ ステム研究系(3部門)に再配置 Six research departments were rearranged into two research divisions, the Division of Ocean-Earth System Science (including three departments) and the Division of Marine Life Science. ■ 海洋科学国際共同研究センターを国際連携研究センター に改組 Center for International Cooperation was reorganized and renamed as the Center for International Collaboration. - 観測研究企画室と陸上共同利用施設を改組し共同利用 共同研究推進センター、研究航海企画センターを設置 Office for Cruise Coordination and Cooperative Research Facilities was reorganized and the Center for Cooperative Research Promotion and Center for Cruise Coordination were established. - 4 海洋研究所と気候システム研究センターが統合し、大気 海洋研究所が発足 地球表層圏変動研究センターを新たに設置し、3研究系、 1研究連携領域、3センターの体制で活動開始 ORI and CCSR were integrated, and the Atmosphere and Ocean Research Institute (AORI) began operation with a structure of three Research divisions. one Department of Collaborative Research, and two Research Centers including the newly-established Center for Earth Surface System Dynamics. - 共同利用・共同研究拠点として認可 AORI was authorized as a "Joint Usage/Research Center". - 2011. 3 東日本大震災により、国際沿岸海洋研究センターの施設 に甚大な被害 The Great East Japan Earthquake gave a serious damage to the facilities of the International Coastal Research Center # 機構 | ORGANIZATION #### 組織図 Organization of AORI 5 # 委員会 | COMMITTEES #### 協議会委員 Conference Committee as of January 1, 2012 学 外 Outside the University 北海道大学大学院水産科学研究院 Graduate School of Fisheries Sciences and Faculty of Fisheries, Hokkaido University 東北大学大学院理学研究科 Graduate School of Science, Tohoku University 早稲田大学人間科学学術院 Faculty of Human Sciences, Waseda University 名古屋大学大学院環境学研究科 Graduate School of Environmental Studies, Nagoya University 京都大学大学院理学研究科 Graduate School of Science, Kyoto University 広島大学大学院生物圏科学研究科 Graduate School of Biosphere Science, Hiroshima University 長崎大学大学院生産科学研究科 Graduate School of Science and Technology, Nagasaki University 国立極地研究所研究教育系 Research Group, National Institute of Polar Research 海洋研究開発機構 地球情報研究センター Data Research Center for Marine-Earth Sciences, JAMSTEC 学内 Inside the University The University of Tokyo 東京大学 東京大学大学院理学系研究科 Graduate School of Science, The University of Tokyo 東京大学大学院農学生命科学研究科 Graduate School of Agricultural and Life Sciences, The University of Tokyo 東京大学大学院新領域創成科学研究科 Graduate School of Frontier Sciences, The University of Tokyo 東京大学地震研究所 Earthquake Research Institute, The University of Tokyo 東京大学大気海洋研究所 Atmospere and Ocean Research Institute, The University of Tokyo 東京大学大気海洋研究所 Atmospere and Ocean Research Institute, The University of Tokyo 東京大学大気海洋研究所 Atmospere and Ocean Research Institute, The University of Tokyo 教授 桜井 泰憲 Professor SAKURAI, Yasunori 教授 花輪 公雄 Professor HANAWA, Kimio 教授井內 美郎ProfessorINOUCHI, Yoshio教授田上 英一郎 Professor TANOUE, Eiichiro 教授 余田 成男 Professor YODEN, Shigeo 教授 井関 和夫 Professor ISEKI, Kazuo 教授 中田 英昭 Professor NAKATA, Hideaki 教授 福地 光男 Professor FUKUCHI, Mitsuo センター長 今脇 資郎 Director IMAWAKI, Shiro Director IMAWAKI, Shiro 理事·副学長 松本 洋一郎 Managing Director, MATSUMOTO, Youichiro Executive Vice President 教授 日比谷 紀之 Professor HIBIYA, Toshiyuki 教授 浅川 修一 Professor ASAKAWA, Shuichi 研究科長 上田 卓也 Dean UEDA, Takuya 所長 小屋口 剛博 Director KOYAGUCHI, Takehiro 所長 新野 宏 Director NIINO, Hiroshi 副所長 木本 昌秀 Vice Director KIMOTO, Masahide 副所長 木暮 一啓 Vice Director KOGURE, Kazuhiro #### 研究船共同利用運営委員会委員 **Cooperative Research Vessel Steering Committee** #### 所 外 Outside the 東北大学大学院理学研究科 Graduate School of Science, Tohoku University 東京海洋大学海洋科学部 Faculty of Marine Science, Tokyo University of Marine Science and Technology 名古屋大学地球水循環研究センター Hydrospheric Atmospheric Research Center, Nagoya University 富山大学大学院理工学研究部 Graduate School of Science and Engineering, Toyama University 水産総合研究センター中央水産研究所 National Research Institute of Fisheries Science 気象庁地球環境・海洋部 Global Environment and Marine Department, Japan Meteorological Agency 海洋研究開発機構 地球環境変動領域 Research Institute for Global Change, JAMSTEC 海洋研究開発機構 海洋·極限環境生物圏領域 Institute of Biogeoscience, JAMSTEC 所 内 Inside the Institute 6 東京大学大気海洋研究所 Atmospere and Ocean Research Institute, The University of Tokyo 東京大学大気海洋研究所 スポスチスズル海汗が12.771 Atmospere and Ocean Research Institute, The University of Tokyo 東京大学大気海洋研究所 Atmospere and Ocean Research Institute, The University of Tokyo 東京大学大気海洋研究所 Atmospere and Ocean Research Institute, The University of Tokyo 教授 藤本 博巳 Professor FUJIMOTO, Hiromi 教授 吉田 次郎 Professor YOSHIDA, Jiro 教授 石坂 丞二 Professor ISHIZAKA, Joji 教授 張 勁 Professor ZHANG, Jing 海洋生産部長 Director 海洋気象課長 中田 薫 NAKATA, Kaoru 海洋気象課長 安藤 正 海洋気象課長 安藤 正 Director,Marine Division ANDO, Tadashi 領域長 深澤 理郎 Director FUKASAWA, Masao 領域長 北里洋 Director KITAZATO, Hiroshi 所長 新野 宏 Director NIINO, Hiroshi 副所長 木暮 一啓 Vice Director KOGURE, Kazuhiro 教授 蒲生 俊敬 Professor GAMO, Toshitaka Professor GAMO, Tos 教授 津田 敦 Professor TSUDA. Atsushi CATALOG ATMOSPHERE AND OCEAN RESEARCH INSTITUTE 2011 # 教職員|STAFF as of October 1, 2011 | 歴代所長 (大気海洋研究所)
Past Directors (AORI) | | 歴代センター長 (気候システム研究センター)
Past Derectors (CCSR) | 名誉教授
Professors Emeritus | | | |---|--------------------------|---|-----------------------------|------------------------------|--| | 2010.4.1-2011.3.31 | 西田 睦
NISHIDA, Mutsumi | 1991.4.1 - 1995.3.31 松野 太郎
MATSUNO, Taro | 1983 | 堀部 純男
HORIBE, Yoshio | | | 2011.4.1- | 新野 宏
NIINO, Hiroshi | 1995.4.1-2004.3.31 住明正
SUMI, Akimasa | 1984 | 奈須 紀幸
NASU, Noriyuki | | | | | 2004.4.1-2010.3.31 中島 映至
NAKAJIMA, Teruyuki | 1987 | 服部 明彦
HATTORI, Akihiko | | | | | | 1987 | 田中 昌一
TANAKA, Syoichi | | | | | 歴代所長 (海洋研究所)
Past Directors (ORI) | 1987 | 寺本 俊彦
TERAMOTO, Toshihiko | | | | | 1962.4.1 - 1964.3.31 (故)日高 孝次
(deceased) HIDAKA, Kouji | 1987 | 平野 敏行
HIRANO, Toshiyuki | | | | | 1964.4.1 - 1964.9.9 (故) 松江 吉行
(deceased) MATSUE, Yoshiyuki | 1993 | 浅井 冨雄
ASAI, Tomio | | | | | 1964.9.10 - 1965.9.30 (故) 松江 吉行
(deceased) MATSUE, Yoshiyuki | 1993 | 小林 和男
KOBAYASHI, Kazuo | | | | | 1965.10.1 - 1967.9.30 小倉 義光 | 1993 | 石井 丈夫
ISHII, Takeo | | | | | OGURA, Yoshimitsu
1967.10.1 - 1968.11.30 (故)西脇 昌治 | 1997 | 瀬川 爾朗
SEGAWA, Jiro | | | | | (deceased) NISHIWAKI, Masaharu
1968.12.1 - 1972.10.31奈須 紀幸 | 1998 | 沖山 宗雄
OKIYAMA, Muneo | | | | | NASU, Noriyuki
1972.11.1 - 1974.10.31 (故)西脇 昌治 | 1998 | 平野 哲也
HIRANO,Tetsuya | | | | | (deceased) NISHIWAKI, Shouji
1974.11.1 - 1976.4.1 (故)内田 清一郎 | 2003 | 木村 龍治
KIMURA, Ryuji | | | | | (deceased) UCHIDA, Sei-ichirou
1976.4.2 - 1980.4.1 (故) 丸茂 隆三 | 2003 | 平 啓介
TAIRA, Keisuke | | | | | (deceased) MARUMO, Ryuzo 1980.4.2 - 1984.4.1 奈須 紀幸 | 2003 | 大和田 紘一
OOWADA, Kouichi | | | | | NASU, Noriyuki | 2004 | 杉本 隆成
SUGIMOTO, Takashige | | | | | 1984.4.2 - 1986.4.1 服部 明彦
HATTORI, Akihiko | 2007 | 太田 秀
OHTA, Suguru | | | | | 1986.4.2 - 1990.4.1 (故) 根本 敬久
(deceased) NEMOTO, Takahisa | 2007 | 小池 勲夫
KOIKE, Isao | | | | | 1990.4.2 - 1993.3.31 浅井 富雄
ASAI, Tomio | 2007 | 平 朝彦
TAIRA, Asahiko | | | | | 1993.4.1 - 1997.3.31 平野 哲也
HIRANO, Tetsuya | 2 0 1 0 | 宮崎 信之
MIYAZAKI, Nobuyuki | | | | | 1997.4.1 - 2001.3.31 平 啓介
TAIRA, Keisuke | | | | | | | 2001.4.1 - 2005.3.31 小池 勲夫
KOIKE, Isao | | | | | | | 2005.4.1 - 2007.3.31 (故) 寺崎 誠
(deceased) TERAZAKI, Makoto | | | | | | | 2007.4.1 - 2010.3.31 西田 睦
NISHIDA, Mutsumi | | | | 所長 Director 副所長 Advise #### 東京大学大気海洋研究所長室 Director and Vice Director of AORI 新野 宏 NIINO, Hiroshi 木墓 一啓 KOGURE. Kazuhiro Vice Director 木本 昌秀 副所長 KIMOTO, Masahide Vice Director 所長補佐 永田 俊 NAGATA, Toshi 所長補佐 道田 豊 MICHIDA, Yutaka #### 気候システム研究系 Division of Climate System Research #### 気候モデリング研究部門 **Department of Climate System Modeling** #### 気候システムモデリング研究分野 Climate System Modeling Section 教授(兼) 中島 映至 NAKAJIMA, Teruyuki Professor 阿部 彩子 准教授 Associate Professor ABE, Ayako 吉森 正和 特任助教 Project Research Associate YOSHIMORI, Masakazu 井上 元 客員教授 Visiting Professor INOUE, Gen #### 大気システムモデリング研究分野 **Atmospheric System Modeling Section** 教授 高橋 正明 Professor TAKAHASHI, Masaaki 今須 良一 准教授 Associate Professor IMASU, Ryoichi # 海洋システムモデリング研究分野 Ocean System Modeling Section 准教授 羽角 博康 Associate Professor HASUMI, Hirovasu 講師 田 題 Lecturer OKA, Akira 客員教授 村上 正隆 Visiting Professor MURAKAMI, Masataka #### 気候変動現象研究部門 **Department of Climate Variability Research** #### 気候変動研究分野 Climate Variability Research Section 教授 木本 昌秀 KIMOTO, Masahide Professor 特任助教 三浦 裕亮 Project Research Associate MIURA, Hiroaki 住 明正 兼務教授 Professor SUMI, Akimasa 江守 正多 客員准教授 Visiting Associate Professor EMORI, Seita #### 気候データ総合解析研究分野 Comprehensive Climate Data Analysis Section 教授 喜薮 縁 TAKAYABU, Yukari. N Professor 准教授 渡部 雅浩 Associate Professor WATANABE, Masahiro 特任助教 構井 賞 Project Research Associate YOKOI, Satoru #### 気候水循環研究分野 Climate and Hydrology Research Section 准教授 芳村 丰 Associate Professor YOSHIMURA, Kei #### 海洋地球システム研究系 Division of Ocean-Earth System Science #### 海洋物理学部門 Department of Physical Oceanography #### 海洋大循環分野 #### Ocean Circulation Section 川邉 正樹 教授 Professor KAWARE Masaki 准教授 岡 英太郎 OKA, Eitarou Associate Professor 柳本 大吾 Research Associate YANAGIMOTO, Daigo # 海洋大気力学分野 #### **Dynamic Marine Meteorology Section** 教授 新野 宏 NIINO, Hiroshi Professor 伊賀 啓太 Associate Professor IGA, Keita 助教 柳瀬 亘 Research Associate YANASE, Wataru #### 海洋変動力学分野 8 #### Ocean Variability Dynamics Section 藤尾 伸三 Associate Professor FUJIO, Shinzo ## 海洋化学部門 **Department of Chemical Oceanography** #### 海洋無機化学分野 #### **Marine Inorganic Chemistry Section** 教授 蒲生 俊敬 GAMO, Toshitaka Professor 小畑 元 准教授 OBATA, Hajime Associate Professor 中山 典子 助教 NAKAYAMA, Noriko Research Associate #### 生元素動態分野 #### **Marine Biogeochemistry Section** 教授 永田 俊 NAGATA, Toshi Professor 小川 浩史 Associate Professor OGAWA, Hiroshi 助教 宮島 利宏 Research Associate MIYAJIMA, Toshihiro #### 大気海洋分析化学分野 #### Atmosphere and Ocean
Analytical **Chemistry Section** 教授 佐野 有司 Professor SANO, Yuji 助教 高畑 直人 Research Associate TAKAHATA, Naoto ## 海洋底科学部門 **Department of Ocean Floor Geoscience** #### 海洋底地質学分野 #### Marine Geology Section 教授 徳山 英一 TOKUYAMA, Hidekazu Professor ※兼務准教授 芦 寿一郎 Associate Professor ASHI. Juichiro #### 海洋底地球物理学分野 #### **Submarine Geophysics Section** 准教授 沖野 郷子 Associate Professor OKINO, Kyoko 朴 谁午 准教授 Associate Professor PARK Jin-Oh #### 海洋底テクトニクス分野 # Ocean Floor Geotectonics Section 教授 川幡 穂高 Professor KAWAHATA, Hodaka 横山 祐典 准教授 Associate Professor YOKOYAMA, Yusuke 井上 麻夕里 Research Associate INOUE, Mayuri #### 海洋生命システム研究系 **Division of Marine Life Science** #### 海洋生態系動態部門 **Department of Marine Ecosystems Dynamics** #### 浮遊生物分野 #### Marine Planktology Section 教授 津田 敦 Professor TSUDA, Atsushi 助教 西川淳 Research Associate NISHIKAWA, Jun #### 微生物分野 #### **Marine Microbiology Section** 教授 (兼) 木暮 一啓 Professor KOGURE, Kazuhiro 准教授 濱崎 恒二 Associate Professor HAMASAKI, Kouji 助教 西村 昌彦 Research Associate NISHIMURA, Masahiko #### 底生生物分野 #### **Benthos Section** ※兼務教授 小島 茂明 Professor KOJIMA, Shigeaki 准教授 狩野 泰則 Associate Professor KANO, Yasunori #### 海洋生命科学部門 **Department of Marine Bioscience** #### 生理学分野 #### **Physiology Section** 教授竹井 祥郎ProfessorTAKEI, Yoshio准教授兵藤晋Associate ProfessorHYODO, Susumu助教日下部 誠Research AssociateKUSAKABE, Makoto #### 分子海洋生物学分野 #### **Molecular Marine Biology Section** 教授 西田 睦 Professor NISHIDA, Mutsumi 准教授 井上 広滋 Associate Professor 助教 馬渕 浩司 Research Associate MABUCHI, Koji #### 行動生態計測分野 #### Behavior, Ecology and Observation Systems Section 塚本 勝巳 教授 TSUKAMOTO, Katsumi Professor 准教授 小松 輝久 KOMATSU, Teruhisa Associate Professor 稲垣 正 助教 Research Associate INAGAKI, Tadashi 助教 石田 健一 ISHIDA, Ken-ichi Research Associate #### 海洋生物資源部門 **Department of Living Marine Resources** #### 環境動態分野 Fisheries Environmental Oceanography Section 教授 安田一郎 YASUDA, Ichiro ※兼務准教授 小松 幸生 Associate Professor KOMATSU, Kosei #### 資源解析分野 **Fish Population Dynamics Section** ※兼務教授 白木原 國雄 Professor SHIRAKIHARA, Kunio 准教授 Associate Professor HIRAMATSU, Kazuhiko #### 資源生態分野 #### **Biology of Fisheries Resources Section** 教授 渡邊良朗 Professor WATANABE, Yoshiro 准教授 河村 知彦 Associate Professor KAWAMURA, Tomohiko 助教 猿渡 敏郎 Research Associate SARUWATARI, Toshiro # 研究連携領域 **Department of Collaborative Research** ## 生物海洋学分野 #### Biological Oceanography Section ※ 兼務教授 木村 伸吾 Professor KIMURA, Shingo※ 兼務助教 北川 貴士 Research Associate KITAGAWA Takashi #### 海洋アライアンス連携分野 #### Ocean Alliance Section ※ 兼務教授(兼) Professor 特任准教授 Project Associate Professor 兼務特任准教授 Project Associate Professor AOYAMA, Jun 兼務特任准教授 Project Associate Professor SHIMODE, Shinji #### 国際沿岸海洋研究センター International Coastal Research Center #### 沿岸生態分野 International Scientific Planning Section #### 沿岸保全分野 **Coastal Conservation Section** センター長 (兼)・教授 大竹 二雄 OTAKE, Tsuguo 准教授 佐藤 克文 SATO, Katsufumi 助教 福田 秀樹 Research Associate FUKUDA, Hideki #### 生物資源再生分野 Coastal Ecosystem Restoration Section (2012年度設置予定) #### 地域連携分野 Regional Linkage Section 客員准教授 依田 憲 Visiting Associate Professor YODA, Ken #### 国際連携研究センター Center for International Collaboration #### 国際企画分野 **International Scientific Planning Section** 教授 道田 豊 Professor MICHIDA, Yutaka #### 国際学術分野 International Academy Section センター長 (兼)・教授 植松 光夫 Director, Professor UEMATSU, Mitsuo #### 国際協力分野 International Research Cooperation Section 教授 西田 周平 Professor NISHIDA, Shuhei 准教授 (兼) 井上 広滋 INOUE, Koji 今須 良一 Associate Professor 准教授 (兼) Associate Professor 准教授 (兼) Associate Professor PARK, Jin-Oh #### 客員部門 **Visiting Researchers Section** 客員教授 池田 元美 Visiting Professor IKEDA, Motoyoshi #### 地球表層圏変動研究センター Center for Earth Surface System Dynamics #### 古環境変動分野 Paleo-environmental Research Section 准教授(兼) 横山 祐典 Associate Professor YOKOYAMA, Yusuke #### 海洋生態系変動分野 **Ecosystem Research Section** 准教授 伊藤 幸彦 Associate Professor ITOH, Sachihiko 准教授(兼) 羽角 博康 Associate Professor HASUMI, Hiyoroyasu 生物遺伝子変動分野 大気海洋系変動分野 **Genetic Research Section** 教授 木暮 一啓 Professor KOGURE, Kazuhiro 講師 岩崎 渉 Lecturer IWASAKI, Wataru **Atmosphere and Ocean Research Section** センター長 (兼)・教授 中島 映至 Director, Professor NAKAJIMA, Teruyuki 教授 佐藤 正樹 Professor SATOH, Masaki #### 共同利用共同研究推進センター Center for Cooperative Research Promotion センター長 (兼) 木暮 一啓 Director KOGURE, Kazuhiro #### 観測研究推進室 **Field Research Support Section** 室長(兼) 津田 敦 TSUDA, Atsushi 室長補佐(兼)·技術専門員 北川 庄司 Vice Head, Senior Technical Specialist 技術専門職員 田村 千織 Technical Specialist 技術専門職員 石垣 秀雄 Technical Specialist ISHIGAKI, Hideo 技術職員 竹内 誠 Technical Staff Technical Staff TAKEUCHI, Makoto NAGASAWA, Maki #### 陸上研究推進室 **Laboratory Research Support Section** 技術専門員 小笠原 早苗 Senior Technical Specialist OGASAWARA, Sanae 技術専門職員 早乙女 伸枝 Technical Specialist SAOTOME, Nobue 技術専門職員 森山 彰久 Technical Specialist MORIYAMA, Akihisa 技術職員 石丸君江 Technical Staff ISHIMARU, Kimie 技術職員 大矢 眞知子 Technical Staff OYA, Machiko 技術職員 原 政子 技術職員 原 政子 技術職員 棚橋 由紀 技術職員 棚橋 由紀 大衛職員 TANAHASHI, Yuki 技術職員 渡邊 太朗 Technical Staff WATANABE. Taro #### 沿岸研究推進室 **Coastal Research Support Section** 室長 (兼) 佐藤 克文 Head SATO, Katsufumi 室長補佐 (兼)・技術専門員 黒沢 正隆 Vice Head, Senior KUROSAWA, Masataka Technical Specialist 技術職員 平野 昌明 Technical Staff HIRANO, Masaaki #### 研究航海企画センター Center for Cruise Coordination センター長 (兼) 木暮 一啓 Director KOGURE, Kazuhiro センター長補佐 (兼) 稲垣 正 Vice-director INAGAKI, Tadashi #### 事務部 #### **Administration Office** 事務長 吉田 雅彦 General Manager YOSHIDA, Masahiko 副事務長(総務担当) 平澤 敏之 Deputy General Manager HIRASAWA, Toshiyuki (General Affairs) 副事務長(会計担当) 塩田 俊仁 Deputy General Manager SHIODA, Toshihito 総務チーム **General Affairs Team** 係長 宮城 明治 Assistant Manager MIYAGI, Akiharu 専門職員 岡部 友紀 Specialist OKABE, Yuki 一般職員 荒井 泰之 Administrative Staff ARAI, Yasuyuki 国際・研究推進チーム International Affairs and **Research Promotion Team** 係長 福田 祐子 Assistant Manager FUKUDA, Yuko 水津 知成 係長 Assistant Manager SUIZU. Tomonari 篠崎 勲 主任 Senior Staff SHINOZAKI, Isao 一般職員 原 尚子 HARA, Naoko Administrative Staff 図書チーム **Library Team** 係長 武笠 まゆみ Assistant Manager MUKASA, Mayumi 経理課主査(経理担当) 桶谷 文紀 OKEYA, Fuminori 専門職員(環境安全管理担当) 関豊 SEKI, Yutaka Specialist of Safe Hygiene Management 国際沿岸海洋研究センター **International Coastal Research Center** 専門職員 川辺 幸一 KAWABE, Koichi Specialist 財務チーム Finance Team 係長 大浦 輝一 Assistant Manager OURA, Kiichi 主任 黒須 玲子 KUROSU, Reiko Senior Staff 経理・調達チーム **Accounting and Procurement Team** 荻野 久憲 Assistant Manager OGINO. Hisanori 浦田 雅子 主任 Senior Staff URATA, Masako 主任 西井 佐和子 Senior Staff NISHII, Sawako 古屋 慎一郎 主任 Senior Staff FURUYA, Shinichiro 主任 前田 美貴子 Senior Staff MAEDA, Mikiko 施設・安全管理チーム Facilities and Safety Management Team 技術職員(兼) 西野 真理 Technical Staff NISHINO. Mari # 教職員数 as of October 16, 2011 **Number of Staff** | | | 教 授
Professor | 准 教 授
Associate
Professor | 講 師
Lecturer | 助教
Research
Associate | 事務職員
Administrative
Staff | 技術職員
Technical
Staff | 合計
Total | |---|---|---------------------|---------------------------------|-----------------|-----------------------------|---------------------------------|----------------------------|---------------------| | 研究系
Research Divisions | | ① 16
[2] (2) 〈2〉 | 20
(1) 〈2〉 | 1 | 13 | _ | _ | 50
[2] (3) (4) | | 研究連携領域 生物海洋学分野
Department of Collaborative Research
Biological Oceanography Section | | ⟨1⟩ | I | I | ⟨1⟩ | _ | I | (2) | | 附属
研究施設
Research
Centers | 国際沿岸海洋研究センター
International Coastal Research Center | 1
[1] | 2 (1) | | 2 | 1 | _ | 6
[1] (1) | | | 国際連携研究センター
Center for International Collaboration | 3
(1) | [3] | - | _ | | | 3
[3] (1) | | | 地球表層圏変動センター
Center for Earth Surface System Dynamics | 3 | 1
[2] | 1 | _ | | | 5
[2] | | 共同利用共同研究推進センター
Center for Cooperative Research Promotion | | [2] | [2] | _ | [1] | _ | 19 | 19
[5] | | 事務部
Administration Office | | _ | _ | _ | _ | ① 20 | _ | 20 | | 合計
Total | | ① 23
[5] (3) (3) | 23
[7] (2) (2) | 2 | 15
[1] 〈1〉 | ① 21 | 19 | 103
[13] (5) (6) | ※特定有期雇用教職員、特定短時間有期雇用教職員、短時間有期雇用教職員は除く。 ※付た日利雇用労働長、可定益時間予確用分類長、延期間日利雇用分類長の場合。 ※()は表員: 外数 Number of Concurrent Post in parentheses, an inner numbers. ※〈 〉は大学院新領域創成科学研究科 自然環境学専攻 海洋環境学コース 基幹調座教員(大気海洋研究所兼務教員): 外数 Core academic staff of Course of Marine Environmental Studies, Department of Natural Environmental Studies, Graduate School of Frontier Sciences ※①は学内他部局からの兼務:外数 # 共同利用·共同研究拠点 | JOINT USAGE / BESEARCH CENTER #### 共同利用共同研究推進センター **Center for Cooperative Research Promotion** 本センターは、共同利用・共同研究拠点としての大気海洋研究所が行う陸上研究施設や学術研究船を用いた所外研究者の共同利用・共同研究および研究所内の研究に関する支援を行うとともに、新たな技術の導入・開発及び研究施設等の管理・運用等を行うことを目的として、2010年に研究所内の技術職員と研究支援員を集結して設立されました。本センターは、沿岸研究推進室、陸上研究推進室、観測研究推進室の3室と、研究航海企画センターの4組織から構成されています。 The Center for Cooperative Research Promotion was established in April 2010 by consolidating all the technicians and technical support staff of the institute into one organization. It aims to enhance its activities to support visiting scientists who participate in cooperative research programs using the research vessels Tansei Maru and Hakuho Maru and/or research facilities in the institute, to introduce new equipment and technologies to the institute, and to maintain the research facilities in the institute. The center consists of four organizations that are the Coastal Research Support Section, Laboratory Research Support Section, Field Research Support Section and Center for Research Cruise Coordination. #### 陸上研究推進室 柏キャンパスにて拡充された陸上共通実験施設の維持・管理を担当しています。共通実験施設は所内外の多くの研究者により利用されており、室員は各施設に設置された機器の保守管理を行うだけでなく、ユーザーに対する技術協力、大学院生の技術指導も担当します。新しい技術の導入や技術開発も進め、大気海洋研究所の研究アクティビティの向上に貢献しています。 #### ■電子計算機施設 電子計算機施設では、大規模な数値シミュレーションやデータ解析を可能とする並列計算サーバとその周辺機器を備えています。 ## Laboratory Research Support Section The Laboratory Research Support Section is responsible for the overall management, including maintenance, of common research facilities. Support Section staff contribute to the maintenance of research instruments throughout the newly expanded and improved AORI
facility, and also provide technical advice and cooperation to users. The staff are encouraged to acquire and to develop new skills and techniques that will advance research capabilities at AORI. #### **Computer Facility** The computer room has a parallel computer system that enables massive numerical simulations and data analyses, and its peripheral equipments. #### ■放射線同位元素実験施設 放射線同位元素を用いた生物学・化学・物理学的実験を行うための施設です。液体シンチレーションカウンター、ガンマカウンター、ラジオディテクターをはじめとする測定装置の他、各種遠心機、培養設備、遺伝子実験機器、暗室設備などを備えています。 #### ■飼育実験施設 飼育室には、濾過装置と温度調節ユニットを備えた250ℓから3tまでの循環式水槽を多数保有。生物処置室やトランスジェニック生物飼育室、特殊環境実験室、行動解析実験室、温度調節実験室、光環境実験室など多様な研究目的に対応しています。圧縮空気と海水は施設全体に常時供給されます。 #### 中央顕微鏡施設 透過型ならびに走査型電子顕微鏡 (EDX装備) と電子プローブマイクロアナライザー、蛍光X線分析装置などを設置し、試料作製から観察や分析までを施設内で効率的に行うことができます。上記以外の主要機器には、超ミクロトーム、金属蒸着装置、凍結乾燥装置、ディスコプラン、アイソメットなどがあります。 #### ■遺伝子実験施設 遺伝子組み換え実験から配列解析、発現量解析などを行う施設です。核酸抽出や有機溶媒を用いた実験のためのドラフト室を整備。主要設備として、次世代型シーケンサー、キャピラリーシーケンサー3台、リアルタイムPCR、サーマルサイクラー、ピペッティングロボット、コロニーピッカー、イメージアナライザー、純水製造装置、超遠心機、高速冷却遠心機、クリオスタットなどを設置。 #### ■総合クリーン実験施設 高感度・高精度な化学分析を行うクリーンな環境の実験施設です。3実験室から構成され、ナノシムス実験室では、固体試料中の微量元素の同位体を高空間分解能で分析できます。無機系実験室には四重極型誘導結合プラズマ質量分析計などが設置され、微量元素や天然放射性核種を測定しています。生物地球化学実験室では、炭素や窒素などの生元素を分析するため、栄養塩自動分析計や安定同位体比質量分析計などを使用することができます。 #### **Radioisotope Laboratory** Biological, chemical and physical studies using radioisotopes are safely undertaken in this secure and modern facility. Major instruments include liquid scintillation counter, gamma counter, radiodetector, centrifuges, incubators, molecular biology equipment, and a scientific dark room. #### **Aquarium Facility** An assortment of recirculating freshwater and seawater aquaria (from 250 liter to 3-ton capacity) are housed in the facility's main room. Each aquarium is served by aeration, and by filter and temperature control units. The Aquarium Facility's main room and the adjoining rooms can be flexibly adapted to various research purposes, such as dissection, breeding and transgenic experiments, deep-sea environment simulation, behavior analysis, and temperature- and light-controlled environmental experiments. #### **Electron Microscopy Facility** Major instruments in this facility include transmission and scanning electron microscopes, electron probe microanalyzers, and an X-ray fluorescence analyzer. Necessary supporting equipment, such as a ultramicrotome, etc., are also available here. The Facility supports microscopical studies from sample preparation through observation and data analysis. #### **Molecular Biology Laboratories** These facilities are used for molecular biological work, including recombinant DNA experiments, nucleotide sequence determination and gene expression analyses. Major instruments include two fume hoods, a next-generation DNA sequencer, three capillary-based DNA sequencers, real-time quantitative PCR system, thermal cyclers, Biomeck pipetting robot, automated colony picker, image analyzer, ultrapure water system, ultracentrifuge, analytical and other centrifuges, and cryostat. #### **Advanced Clean Analytical Facility** This facility supports sensitive and precise instrumental analyses for chemical and isotopic compositions of marine samples, consisting of a number of advanced analytical instruments, like a high resolution ion microprobe (NanoSIMS), inductively coupled plasma mass spectrometers, nutrient auto-analyzers, and isotoperatio mass spectrometers. Clean rooms are also built in the facility to determine trace metals and bioelements (carbon and nitrogen) in contamination-free environments. This facility is available for analyses of various samples including seawater, sediments, carbonates, rocks and biological materials. #### ■物理環境実験施設 地球の回転によるコリオリカや密度成層の効果の効いた大 規模な大気・海洋の運動とその生物環境への影響などを調 べる室内実験を行うための施設を備えています。主要な施設 としては、直径1.5 m、回転数0-15 rpmで安定した回転を行う 回転実験台があります。 #### ■地学試料処理施設 岩石および耳石の切断・研磨、蛍光X線分析用のガラスビー ドの作製を行う施設です。岩石カッター、卓上ドリル、岩石研 磨機、岩石クラッシャーを備えます。また、ドレッジ試料・堆積 物コア試料の記載、岩石物性測定、サンプリングを行うこと ができます。 #### ■地学精密分析実験施設 炭酸塩試料、海底堆積物、岩石試料などに含まれる微量元 素や同位体比を分析するための施設です。2基のドラフトとク リーンベンチを備えたクリーンルームがあり、二重収束型高 分解能質量分析計が設置されています。個体試料をそのまま 測定に供することが可能なレーザーアブレーション装置の導 入も予定されています。 #### ■海洋生物培養施設 20℃恒温室、4℃恒温室、インキュベーター11台、振盪培養 機3台、振盪機5台、オートクレーブ3台、クリーンベンチ1台、 乾熱滅菌機1台が設置されており、様々な温度域で、海洋細 菌、微細藻類などの株の保存、植え継ぎおよび短期・長期の 培養実験を行うことができます。 #### 低温施設 低温実験室 (+4℃) 1室, 試料低温保存室 (+4℃) 2室, 試料 冷凍保存室 (-30℃) 4室 (内1室は+4℃に変更可能) からな り、低温での実験や研究船およびフィールドで採集した試料 の保存が可能です。 #### ■試料処理施設・試料保管庫 研究船やフィールドで採集した液浸生物試料、海水、岩石、堆 積物コアなどを保管しています。特に試料処理施設はドラフト を備えており、液浸生物試料の処理を行うこともできます。 #### ■液体窒素タンク設備 研究所の屋外に内容積4.98m3のタンクが1基設置されてい ます。PC制御による自動供給装置が装備されており、容器を 登録すれば、タッチパネル操作で容器サイズにあわせて液体 窒素を安全かつ容易に充填することができます。 #### Geophysical and Environmental Fluid Dynamics Laboratory This laboratory has experimental facilities to study the effects of the Earth's rotation and density stratification on large-scale atmospheric and oceanic motions, and environments for marine living organisms. The principal facility is a turntable that has a diameter of 1.5 meters and attains a stable rotation rate between 0 and 15 rpm. #### Sample Preparation Laboratory for Earth Science This sample preparatory facility is provided for cutting and polishing of rock/otolith samples, and for preparation of glass beads for X-ray fluorescence analysis. Rock cutters, table drills, rock polishers, a rock crusher and a bead sampler are available. The facility supports descriptive and physical property analyses, and sampling of dredge rock and sediment cores. #### **Clean Geochemistry Laboratory** This laboratory is designed for analyses of trace elements and isotopic compositions in carbonate, sediment and rock samples. There is a chemical preparation section in the room equipped with two fume hoods and a laminar flow cabinet. A double focusing magnetic sector field inductively coupled plasma mass spectrometer is installed that will be upgraded with a laser ablation system. #### Laboratory for Cultivation of Microalgae and Bacteria Microorganisms such as microalgae and bacteria are cultured and stored at various temperature ranges. Major instruments include shaking incubators, autoclaves, clean bench, and dry heat sterilizer. Two temperature-controlled rooms (4°C and 20°C) are available. #### **Low-Temperature Facilities** Experiments at low temperature are undertaken in the low temperature laboratory (+4°C). Samples and specimens can be maintained in cold storage at refrigerator (+4°C) or freezer (-30°C) temperatures. #### Sample and Specimen Storage Facilities Samples and specimens collected by oceanic research vessels and from other field research sites (e.g., sediment cores, rock specimens, seawater samples, dried and formalin-preserved specimens of marine organisms, etc.) are stored in this facility. #### Liquid Nitrogen Supply Facility A liquid nitrogen tank of 4.98 m³ capacity is located adjacent to the main institute building. Liquid nitrogen is supplied readily and safely by means of a computer-controlled automatic dispensing and usage monitoring system. #### 沿岸研究推進室 国際沿岸海洋研究センターは、生物生産性と生物多様性が高い三陸沿岸海域の中央部に位置する岩手県大槌町にあり、来所する全国の研究者に対して施設や設備を提供し、船艇を用いた調査のサポートを行ってきました。2011年3月11日の東北沖大地震およびそれに伴う津波によって、建物の3階まで浸水し、船艇をはじめとする全ての施設と設備が被災しました。現在、千葉県柏市にある大気海洋研究所に教員と学生が移動し、研究活動を継続しています。大槌町の城山中央公民館の一室に復興準備室が設置され、復興に向けて歩み始めています。 #### **Coastal Research Support Section** The International Coastal Research Center (ICRC) was located in the town of Otsuchi, Iwate Prefecture, along the species rich and highly productive central Sanriku coast, where it provided operational and facilities support to visiting marine scientists. On March 11, 2011, all facilities and equipment, including research vessels, were either severely damaged or entirely destroyed during the Great East Japan Earthquake and resulting tsunami. Most students and staff have relocated to the main campus in Kashiwa, Chiba, where they are continuing their scientific activities. A temporary office has been established in the Otsuchi Shiroyama Community Center where reconstruction planning is curently underway. #### ■国際沿岸海洋研究センター 所 在 地 : 一時的に柏キャンパスに活動拠点を移動しています。 千葉県柏市柏の葉5-1-5 大気海洋研究所 岩手県上閉伊郡大槌町小鎚第32地割金崎126 大槌町教育委員会 (大槌町中央公民館) 復興準備室 設置年月日: 1973年4月12日 #### ■施設・設備 現在被災により機能を大幅に縮小して共同利用・共同研究を実施しています。 #### ■船艇 グランメーユ: FRP 1.8t、9.53x2.4x1.8m、100kW法馬力 2011年 8月竣工 赤浜: FRP 1.2t、5.75x1.55x0.62m、30kW法馬力 #### **International Coastal Research Center** Address : Kashiwa office) 5-1-5 Kashiwanoha, Kashiwa City, Chiba Prefecture Shiroyama office) Chuo Kouminkan, Otsuchi, Iwate Prefecture Established: April 12, 1973 #### Research Boats Grand Maillet: FRP 1.8 tons, 9.53x2.4x1.8m Akahama: FRP 1.2 tons, 5.75x1.55x0.62m #### 観測研究推進室 学術研究船白鳳丸、淡青丸に乗船して共通観測機器の運用 および取扱い指導など、航海計画の全般にわたる観測支援体 制を主として行っています。さらに、できる範囲で海洋観測にか かわるより広範囲の観測支援を目標としています。陸上におい ては、共通機器および観測機器棟の保守管理や機器の開発 改良などを行います。また運航計画、ドック工事、共通機器の 選定・購入・修理など、航海計画の初期段階から携わっていま す。室長を総括として学術研究船航海に関しては研究航海企 画センターと協力して支援を行っています。 #### ■海洋観測機器棟 本棟は、主に研究航海で使用する、観測機器、資材を収納 するための施設です。施設屋外には、コンテナラボなど大型 機器が置かれ、機器棟倉庫部は2階建てで、吹き抜け部分は 2.8t 天井クレーンを装備し、大型機器の積み込みを容易に しています。また、この施設内には工作機器を装備した観測 機器整備室および、測定機器の整備・調整ができる機器調 整室を備えています。 #### Field Research Support Section This section provides support for both R/V Tansei Maru and R/V Hakuho Maru research cruises. Its main task is technical support of scientific equipment, primarily through shipboard instruction. Other tasks include maintenance and enhancement of equipment for common use, expert advice on cruise planning, and dock service. It also selects, develops, and purchases new equipment. The section is supervised by a manager and works together with the Center for Cruise Coordination for scientific planning of research cruises. #### **Ocean Observation Warehouse** This facility mainly stores research gear and equipment for research cruises of the R/V Tansei Maru and R/V Hakuho Maru. Large equipment such as container laboratories are kept on the outside of this facility. The warehouse is equipped with an overhead crane to facilitate loading of heavy equipment. A machine shop and laboratories are also attached to the building for the
design, development, testing and repair of instruments for use at sea. #### 研究航海企画センター 研究船共同利用運営委員会および観測部会、船舶部会、運 航部会の決定に基づいて学術研究船の研究航海計画を策定し ます。学術研究船の円滑な共同利用航海を推進するために、共 同利用者である所内外の研究者、技術支援をおこなう観測研究 推進室、学術研究船を本所と共同で運航する海洋研究開発機 構や関係省庁、漁業組合などの所外組織の間の連絡と調整をお こないます。 #### Center for Cruise Coordination This center makes cooperative cruise plans for the two research vessels Tansei Maru and Hakuho Maru based on the decisions by the cooperative research vessel steering committee. In order to promote harmonious cooperative cruises, this center connects and coordinates among scientists as users of the cooperative research. the Field Research Support Section, which provide technical support for cruises, and exterior organizations such as the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), which operate the research vessels with the AORI, the authorities concerned, and fishermen's cooperative associations. #### 陸上共通施設、研究支援室 Common Research Facilities, Research Supporting Offices #### 室書図 大気海洋研究所での研究・教育活動を支援するため、関連 図書・雑誌などを収集・保存し、利用に供しています。 所蔵資料の目録情報は、NACSIS-CATシステムを通じて公開し、学内だけでなく他大学や研究機関へも複写や貸出のサービスを提供しています。 特色ある蔵書として、三井海洋生物学研究所の旧蔵書を中核とする海洋探査報告のコレクション "Expedition" があります。また、全国の水産研究所・水産試験所等の資料も充実しています。 蔵書数 60,702冊(和図書22,357冊、洋図書33,345冊) 継続購入雑誌 195種(和雑誌31種、洋雑誌164種) (2011年4月1日現在) #### ■講堂、会議室、講義室、セミナー室 内外研究者によるシンポジウムや講演会、学術研究船淡青丸・ 白鳳丸の航海打ち合わせ、各種講義などに利用されています。 収容人数:講堂142、会議室60、講義室I 36、講義室II 52、 セミナー室(5室)各16~18。 #### ■広報室 研究所の活動や研究成果を広く社会へ紹介するための窓口として、2010年4月に本格的に設置されました。所外からの種々の問い合わせや見学者への応対、教職員らの記者発表の支援、所の印刷物(『要覧/年報』、ニュースレター『Ocean Breeze』等)の編集・製作、一般公開の企画・運営、ウェブサイトの企画・管理・更新などを通じて、所の活動を積極的に発信しています。また、所に関する史資料の収集・保管・展示も行っています。 #### ■電子計算機ネットワーク管理室 研究用電子計算機システムおよびネットワークが安全かつ効率的に利用できるように維持・管理を行っています。研究所には海洋科学研究用電子計算機システムと気候システム研究装置が設置されています。これらは高性能計算機と大容量のデータストレージやデータ交換用サーバ等から構成され、海洋や気候モデルのプログラム開発、観測データや東京大学情報基盤センター等のスーパーコンピューターの出力データの保管や解析などに用いられています。高速ネットワークにより、所内だけでなく、全国の共同利用研究者によっても利用されています。さらに、管理室では、情報交換に不可欠な電子メールやメーリング・リストなどの基盤的なネットワークサービスを提供しています。 #### Library The AORI library collects and conserves books and journals related to the ocean and atmospheric sciences, and supports the activities of research and education. The list of the books and journals of the library is available through the NACSIS-CAT system. The library also provides the service of making copies of documents for scientists in other institutes and universities as well as within the University of Tokyo. The AORI library has a special collection category called "Expedition", which includes documents and reports from scientific surveys that were collected by the Mitsui Institute of Marine Biology, as well as substantial materials from the national and prefectural fisheries research institutes. Number of books: 60,702 (Japanese 22,357, Foreign 38,345) Current Journals (subscription): 195 (Japanese 31, Foreign 164) (As of April 1st, 2011) #### Auditorium, Conference Room, Lecture Room, Seminar Room These rooms are used for symposia, meetings, and lectures by both domestic and foreign scientists. Capacity: Auditorium 142, Conference Room 60, Lecture Room I 36, Lecture Room II 52, Seminar Room (5 rooms) 16-18 each. #### **Public Relations Office** Since establishment in April 2010, the PR Office has served as the main point of contact between AORI and the public. In addition to receiving visitors and fielding inquiries, we also arrange press releases, maintain the institution's website, and manage open campus events. We produce a number of periodical publications, such as the AORI Catalog/Annual Report and the newsletter "Ocean Breeze". Finally, we actively collect, curate, and exhibit materials that reflect the history of AORI. #### **Computer and Network Management Office** The Computer and Network Management Office maintains AORI's computer systems and network infrastructure to ensure secure and efficient operation. AORI has two computer systems, one for marine research and the other for climate research. Each consists of high-performance computers, large mass storage, data exchange servers, etc. These systems are used to actively develop new ocean and climate models, as well as to store and analyze observational data and supercomputer simulation output. With high-speed network connectivity, they are also available to nationwide cooperative researchers. In addition, the office provides essential network services such as email and mailing lists. #### 学術研究船 淡青丸:白鳳丸 Research Vessels Tansei Maru and Hakuho Maru かつて東京大学海洋研究所は、研究所附属の研究施設として 淡青丸と白鳳丸の二隻の研究船を保有し、それらの研究船は全 国共同利用施設として日本全国の研究者に活用されてきました。 2004年度からは、船籍が海洋研究開発機構 (JAMSTEC) に 移管され、東京大学大気海洋研究所と海洋研究開発機構が協 力して学術研究船の運航にあたっています。 淡青丸は、1982年に就航した全長51m、総トン数610tの中 型研究船であり、主として日本近海の調査研究で活躍していま す。また、白鳳丸は、1989年に就航した全長100m、総トン数 3991tの大型研究船であり、遠洋、近海を問わず、世界の海を舞 台として長期の研究航海に利用されています。 The Atmosphere and Ocean Research Institute coordinates scheduling and operations of two research vessels with the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The research vessel Tansei Maru is 51m long and displaces 610 gross tons. She entered service in 1982 and is used for a relatively short cruises near Japan. The research vessel Hakuho Maru is 100m long and displaces 3991 gross tons. She entered service in 1989 and is used for cruises globally. 学術研究船 淡青丸 起工:1982年2月1日 進水:1982年7月9日 竣工:1982年10月15日 #### Research Vessel Tansei Maru Keep Laid: February 1, 1982 Launched: July 9, 1982 Completed: October 15, 1982 > 学術研究船 白鳳丸 起工:1988年5月9日 進水:1988年10月28日 竣工:1989年5月1日 #### Research Vessel Hakuho Maru Keep Laid: May 9, 1988 Launched: October 28, 1988 Completed: May 1, 1989 #### 共同利用・共同研究公募 **Application for Joint Usage and Cooperative Research** 大気海洋研究所は、海洋における基礎的な研究を行うことを目的とした全国の研究者のための共同利用・共同研究拠点として、 各研究分野において、多くの研究者に幅広く利用されています。 本所の共同利用は、毎年、翌年度実施分の公募を行っており、 応募された研究計画などの選考については次のとおり行っています。研究船共同利用は、学内外の委員で構成された研究船共 同利用運営委員会で審議決定されます。国際沿岸海洋研究センター及び柏地区共同利用については、学内外の委員で構成された共同研究運営委員会で審議され、協議会で決定されます。 #### 公募内容 #### ■学術研究船白鳳丸·淡青丸共同利用 学術研究船白鳳丸は、遠洋、近海のいかんを問わず比較的長期の研究航海を行う研究船であり、あらかじめ決められた研究計画に基づいた共同利用の公募を行います。学術研究船淡青丸は、主として日本近海の調査研究の公募を行っています。なお、東日本大震災後の東北近海における様々な学術調査のため、淡青丸の公募にあたっては「震災対応枠」を設けています。 #### ■国際沿岸海洋研究センター共同利用 岩手県大槌町の国際沿岸海洋研究センターを利用する共同利用であり、所内外の研究者が本センターに滞在して研究を行う外来研究員制度と、少数の研究者による研究集会の公募を行っています。 #### ■柏地区共同利用 比較的多人数の1~2日間の研究集会、比較的少数の研究者による数日間の研究集会と、所外の研究者が本所に滞在して研究を行う便宜を提供することを目的とした外来研究員制度があります。 #### ■大型計算機共同利用 本研究所外の個人またはグループの研究者と本研究所気候システム系 の教員が協力し、スーパーコンピューターを含む大型計算機システムを 用いて行う研究に対して公募を行っています。 ## ■学際連携研究 全国の個人またはグループの研究者と本研究所の教員が協力して行う 公募型の共同研究です。海洋や大気に関わる基礎的研究および地球 表層圏の統合的理解の深化につながる研究が対象となり、特に学際 的な共同研究の提案を期待します。 #### 公募時期 **Annual Schedule of Application** | 公募内容 | 公募時期 | 申込期限 | |---|-----------------|------------------| | Service to apply | Announcement | Closing date | | 白 鳳 丸 | 8月 | 9月中旬 | | R/V Hakuho Maru | August | September | | 淡 青 丸 | 8月 | 9月中旬 | | R/V Tansei Maru | August | September | | 国際沿岸海洋研究センター
外来研究員/研究集会
Visiting Scientist/Research Meeting in
International Coastal Research Center | 10月
October | 11月末
November | | 柏地区 外来研究員/研究集会
Visiting Scientist/Research Meeting in
Kashiwa Campus | 10月
October | 11月末
November | | 大型計算機共同利用
Collaborative Use of the Computing Facility
including the Super Computing System | 12月
December | 1月
January | | 学際連携研究 | 11月 | 1月 | | Interdisciplinary Collaborative Research | November | January | The Atmosphere and Ocean Research Institute offers a cooperative research program for scientists conducting fundamental ocean research. Many researchers across all scientific disciplines participate in the program. Application to the program are provided annually, one year prior to the year of shipboard operations. Each proposed research plan is reviewed by Cooperative Research Vessel Steering Committee consisting of AORI and external members. Visiting scientist applications and research meeting proposals are subject to approval by AORI Council after reviewed by Cooperative Research Steering Committee. #### **Available Services** #### Research Vessels Hakuho Maru and Tansei Maru The research vessel Hakuho Maru conducts long term cruises accross the world wide. Application is available to scientists who have the scientific research themes of each cruise. This cruise should be planned in advance. The research vessel Tansei Maru is available for cruises around Japan. #### ■International Coastal Research Center The International Coastal Research Center (Otsuchi, Iwate) offers two services. One is to provide in-house laboratory space and facilities to both internal and external researchers, and the other is to assist small groups holding on-site research meetings. #### ■Kashiwa Campus Kashiwa Campus offers two programs. The first one is to support relatively large scientific meetings lasting one to two days, and relatively small meetings lasting several days. The second one is to support visiting scientists, who would like to research at Kashiwa Campus. #### ■Collaborative Use of the Computing Facility The division of climate system research offers research opportunities using the super computing system of the University of Tokyo and seeks research proposals from individuals and groups outside our research institute for collaboration using the facilities of the division. #### ■Interdisciplinary Collaborative Research AORI provides funds for collaborative research, which is conducted by domestic individual or group researcher(s), with AORI staff(s). This interdisciplinary collaborative research intendes to deepen the understanding of the basic science of atmosphere and/or ocean, and the research. 問い合わせ先: 東京大学大気海洋研究所 総務課国際・研究推進チーム 共同研究担当 〒 277-8564 千葉県柏市柏の葉 5-1-5 電話 04-7136-6009 e-mail iarp@aori.u-tokyo.ac.jp For Inquires: International Affairs and Research Promotion Team Atmosphere and Ocean Research Institute The University of Tokyo 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan phone: +81-4-7136-6009 e-mail:
iarp@aori.u-tokyo.ac.jp # 教育システム | EDUCATIONAL SYSTEM #### 教育システムの概要 **Outline of Educational System** 大気海洋研究所の教員は、東京大学大学院の協力講座あるいは兼担講座に所属して大学院教育を担当しています。修士課程あるいは博士課程の大学院生として、大気海洋研究所において修学、研究を行うには、指導を希望する教員が所属する理学系研究科、農学生命科学研究科、新領域創成科学研究科および工学系研究科の専門課程の入学試験に合格した後に、大気海洋研究所の教員を指導教員として選定することになります。 大気海洋研究所は、教養学部において大気海洋科学に関するテーマを定め、関連の教員による連続講義(全学自由研究ゼミナール)を実施しています。そのほか、学部の授業も担当しています。学部卒業もしくは、これと同等以上の学力を有する者を対象とした大気海洋研究所研究生を受け入れています。また、理学系研究科、農学生命科学研究科および、新領域創成科学研究科所属の研究生に対する研究指導、大学外の機関に所属する研究者を対象とした受託研究員制度および、流動研究員制度により研究教育活動を行っています。 Almost all faculty members of the Atmosphere and Ocean Research Institute (AORI) belong to either the Graduate School of Science, the Graduate School of Agricultural and Life Sciences, the Graduate School of Frontier Sciences, or the Graduate School of Engineering all of the University of Tokyo, and are engaged in graduate programs through lecturing and supervision of graduate students. Also, special lectures in atmosphere and oceanography are given to undergraduate students in the College of Arts and Sciences. In addition, AORI accepts both domestic and foreign research students and research fellows. AORI staff are affiliated with the Graduate School of Science (Earth and Planetary Science, Chemistry, and Biological Sciences), the Graduate School of Agricultural and Life Sciences (Aquatic Bioscience), or the Graduate School of Frontier Sciences (Natural Environmental Studies, Sustainability Science, and Computational Biology). relationship between the environment and society. #### 専攻は地球惑星科学、化学、生物科学の3 □ 地球惑星科学専攻 東京大学大学院 理学系研究科 つがあり、理学的アプローチにより大気海洋 Department of Earth and Planetary Science Graduate School Graduate School 化学専攻 科学に関連した諸現象の解明を目指します。 of The University of Science Department of Chemistry Studies of a wide range of oceanographic of Tokyo 生物科学専攻 phenomena are undertaken within specific disci-Department of Biological Science 海や河川、湖沼などの水圏における自然科 」 水圏生物科学専攻 生 命 生物科学を通して、地球の環境資源や Department of Aquatic Bioscience 科学研究科 生物資源の有効性などを追求します。 Graduate School Studies of the global environment and living of Agricultural resources are undertaken in the entire hydroand Life Sciences sphere, including the oceans, rivers, and lakes. 自然環境学専攻 自然環境学専攻では、地球全体の自然環境 新領域創成 Department of Natural Environmental Studies を対象に、自然環境の構造、機能、変動、 科学研究科 陸域環境学コース 資源および自然環境-人間活動の相互作用を Graduate School Course of Terrestrial Environmental Studies 理解し、地球規模の環境問題の解決と新た of Frontier 協力講座 Cooperative Program な自然環境を創成するための研究教育を行っ Sciences ・地球環境モデリング学分野 ています。 Numerical Modeling for Global Environmental Issues Department of Natural Environmental Studies □ 海洋環境学コース dedicates itself to constructing a new field of natural environmental studies with the objec-Course of Marine Environmental Studies tives of understanding the structure, function, resources and changes of natural environment, ■ 基幹講座 Core Program ·地球海洋環境学分野 evaluating natural environment-human relation-Global Marine Environment ships, and forming natural environment for healthy and wealthy human life. · 海洋資源環境学分野 Marine Resource and Environment サステイナビリティ学教育プログラムは、サス ·海洋生物圏環境学分野 テイナブルな社会の実現のために国際的な視 Marine Biosphere Environment 野を持って貢献できる人材の養成を目的とした ■協力講座 Cooperative Program 大学院プログラムです。 ·海洋環境動態学分野 The Graduate Program in Sustainability Science Marine Environmental Dynamics is designed to train internationally-minded professionals that can help create a sustainable ·海洋物質循環学分野 Marine Biogeochemical Cycles · 海洋生命環境学分野 情報生命科学専攻では、バイオインフォマティ Marine Life Science and Environment クスやシステム生物学に関する研究教育を行 ─ サステイナビリティ学教育プログラム っています。 Graduate Program in Sustainability Science Department of Computational Biology promotes 情報生命科学専攻 research and education in the fields of bioinfor-Department of Computational Biology matics and systems biology. □ 社会基盤学専攻 水圏環境グループにて、さまざまなスケールで 工学系研究科 Department of Civil Engineering の水圏環境の実態を解明し、人間社会との Graduate School 適正な関わりかたを考究します。 of Engineering The Environmental Studies on the Hydrosphere group focuses on studying the hydrospheric environment at various scales and places and developing better #### 新領域創成科学研究科 環境学研究系 自然環境学専攻 海洋環境学コース Course of Marine Environmental Studies, Department of Natural Environmental Studies, Division of Environmental Studies, Graduate School of Frontier Sciences 2006年4月、新領域創成科学研究科の組織改組に伴い自然環境学専攻が設置され、その中に3つの基幹講座と3つの研究協力講座からなる海洋環境学コースが新たに発足しました。その理念、目的を次に示します。 海は地球表層の7割を占め、かつては冒険と神秘とロマンに満ちた世界でした。しかし研究の進展につれ、海は地球と生命の歴史を紐解く鍵であること、さらに我々人類が直面する地球環境問題あるいは食料資源問題に深く関わっていることが明らかになってきました。周辺を海に囲まれた我が国にとって、海を科学的に理解し、海をその望ましい状態に維持しながら持続的に利用していくことは必須の課題です。これには海洋メカニズムに関する総合的な知識と、海洋環境システムに対する探求能力あるいは問題解決型の能力を持った人材の養成が急務です。さらにその養成は豊富な国際的経験に裏打ちされたものでなければなりません。 海洋環境学コースの大学院教育の特徴は、大気海洋研究所のキャンパス上で学生生活を送ること、さらに研究航海や沿岸域の調査などを通して教員とともにフィールド研究を行う中でそれぞれの分野の知識を増やし、実践的に研究能力を育てていくことです。また、海洋研究は他国の研究者と共同して進められることが多く、大学院学生もそうした中で外国の若手研究者と共に過ごしながら学ぶことになります。このような現場体験型のプログラムと総合的な講義を通じ、海洋環境を統合的に理解し、そのシステムを駆動するメカニズムを探求する人材、あるいは我が国の海洋利用のあり方に新しい方向性を提示しうる人材の育成を図ることがこの海洋環境学コースの目的です。 In April 2006, Graduate School of Frontier Sciences was reconstituted to establish Department of Natural Environmental Studies in which Course of Marine Environmental Studies, including three core and three cooperative programs, started. The principle and aim are shown as follows The oceans cover 70% of the earth surface, and have long inspired adventure, mystery and imagination. Through earth history the global ocean has been a critical component of the earth's environment. Furthermore, it hosts important renewable and non-renewable resources. Japan, surrounded by the ocean, needs to gain comprehensive scientific knowledge of the ocean, in order to sustain and improve the oceanic environment and to utilize marine resources wisely. Specialists in basic and applied ocean environmental research are therefore in strong demand. The educational program of Marine Environmental Studies is unique in that graduate students conduct their academic life on the campus of the Atmosphere and Ocean Research Institute, offering exceptional opportunities to participate in research cruises and other field work. Students can observe natural phenomena directly, learn modern research techniques, and pursue their own investigations together with many young foreign scientists. The Marine Environmental Studies program is designed to provide graduate students with both field and classroom lecture experience, so that they can develop abilities to investigate environmental processes in the ocean and to develop solutions for current and future environmental challenges. 学生数 Number of Graduate Students Enrolled as of October 1, 2011 | | |
年度 | 2 0 | 0 8 | 2 0 | 0 9 | 2010 | 2011 | |--|---|--------|-------|--------|-------|--------|--------|--------| | Academic Year | | CCSR | ORI | CCSR | ORI | AORI | AORI | | | | 理学系研究科
Science | 修士 MC | 13 | 12 | 12 | 22 | 49 (1) | 56 | | | | 博士 DC | 16 | 18 (3) | 18(1) | 14(1) | 21 (2) | 22 (1) | | | 農学生命科学研究科
Agricultural and Life Sciences | 修士 MC | _ | 25 (3) | _ | 20(1) | 18 (1) | 15 | | | | 博士 DC | _ | 26 (3) | _ | 31 (7) | 28 (9) | 28 (6) | | | 新領域創成科学研究科
Frontier Sciences | 修士 MC | 3 | 44(1) | 4 | 43 (2) | 38 (3) | 35 (2) | | | | 博士 DC | 3(1) | 20 (3) | 4(1) | 24 (3) | 30 (4) | 32 (2) | | 大 学 院 | 工学系研究科
Engineering | 修士 MC | | | | | _ | 1 | | Graduate School | | 博士 DC | | | | | _ | 2 | | | 大学院研究生
Post Graduate Research Student | | _ | _ | _ | 1 | 2 | 1 | | | 特別研究学生
Post Graduate Visiting Student | | _ | 2 | _ | _ | _ | _ | | | 外国人研究生
International Research Student | | _ | 1 (1) | _ | 1 (1) | _ | _ | | | 農学特定研究員
Post Doctoral Research Fellow | | _ | 5 | _ | 3 | 3 | 2 | | 海洋科学特定共同研究員
Post Graduate Research Student for Ocean Science | | _ | 5 | _ | 4 | 2 | 4 | | | 研究生
Research Student | | _ | 3 (2) | _ | 1 (1) | 2 | 2 | | | 日本学術振興会特別研究員
*JSPS Research Fellowship for Young Scientists | | 2 | 8 | 2 | 4 | 5 | 2 | | | 日本学術振興会外国人特別研究員
*JSPS Postdoctoral Fellowship for Foreign Researchers | | _ | 2 | _ | 5 | 6 | 6 | | ()内は外国人で内数 Total number of foreign students are in parentheses. *JSPS : Japan Society for the Promotion of Science # 東京大学海洋アライアンス The University of Tokyo Ocean Alliance 東京大学海洋アライアンスとは、全学にわたる部局横断的の海洋教育研究を行うための核として、7研究科、5研究所、1研究センターなどを中心に平成19年7月に立ち上がった機構と呼ばれる組織です。東京大学には海洋に直接関係する200名を超す教育研究者が在籍しており、それぞれの研究分野をネットワークでつなぐ役割を海洋アライアンスは担っています。その基本的な理念は、社会から要請される海洋関連課題の解決に向けて、グローバルな観点から国と社会の未来を考えることにあり、海洋科学の発展のための知識と理解を深め、新しい概念・技術・産業を創出し、関係する学問分野を統合して新たな学問領域を拓く一方、シンクタンクとして我が国の海洋政策の立案と執行に貢献していくことを目的としています。そのための中核的な部局として、大気海洋研究所は、海洋アライアンスの活動に大きく貢献しています。 #### [大学院横断型 海洋学際教育プログラム] このような目的を達成するために、海洋アライアンスでは、海に関する総合的人材育成を目的とした大学院横断型教育プログラムを実施しています。本プログラムは、理系、文系といった従来の枠組みを超えた学際領域としての海洋学の総合的な発展と、日本の海洋政策の統合化および国際化を担いうる人材の育成を目指しています(www.oa.u-tokyo.ac.jp)。 The University of Tokyo Ocean Alliance was established in July, 2007 as a core for faculty transecting marine education and research composed of 7 graduate schools, 5 institutes and 1 research centers. The 200 teaching and research staffs who study ocean sciences directly are belonging to the University of Tokyo and the Ocean Alliance takes an important role to link the scientists in one network. Its basic concept is development of ocean basic sciences with contribution to efficient planning and action of marine policy. For accomplishment of the purpose, education for scientists and government officials who can evaluate the marine policy based on professional knowledge of ocean sciences is required. The Ocean Alliance provides educational program transecting social science, natural science and technology for the purpose. The Atomosphere and Ocean Research Institute, the University of Tokyo, is a core of the Ocean Alliance and contributes to the activity. # 研究内容 | RESEARCH CONTENTS # ■気候システム研究系 気候の形成・変動機構の解明を目的とし、気候システム全体およびそ れを構成する大気・海洋・陸面等の各サブシステムに関し、数値モデリ ングを軸とする基礎的研究を行います。 26 29 35 # 気候モデリング研究部門 気候システムモデルの開発、およびシミュレーションを通した気 候の諸現象の解明。 気候システムモデリング研究分野 大気システムモデリング研究分野 海洋システムモデリング研究分野
気候モデル比較研究分野 # 気候変動現象研究部門 観測データ、数値シミュレーション、およびそれらの比較・解 析・融合を通した気候変動機構の解明。 気候変動研究分野 気候データ総合解析研究分野 気候水循環研究分野 # ■海洋地球システム研究系 海洋の物理・化学・地学および海洋と大気・海底との相互作用に関する基 礎的研究を通じて、海洋地球システムを多角的かつ統合的に理解します。 # 海洋物理学部門 海洋大循環、水塊形成、海洋変動、大気海洋相互作用、海洋大気 擾乱などの観測・実験・理論による定量的理解と力学機構の解明。 海洋大循環分野 海洋大気力学分野 海洋変動力学分野 # 海洋化学部門 先端的分析手法の開発・応用を進め、大気・海洋・海洋底間の生物 地球化学的物質循環を、幅広い時空間スケールにわたって解明。 海洋無機化学分野 生元素動態分野 大気海洋分析化学分野 #### 海洋底科学部門 中央海嶺、背弧海盆、プレート沈み込み帯など海底の動態の解明 および海底堆積物に記録された地球環境記録の復元と解析。 海洋底地質学分野 海洋底地球物理学分野 海洋底テクトニクス分野 # ■海洋生命システム研究系 海洋における生命の進化・生理・生態・変動などに関する基礎的研究 を通じて、海洋生命システムを多角的かつ統合的に理解します。 #### 海洋生態系動態部門 海洋生態系を構成する多様な生物群の生活史、進化、相互作用、 動態、および物質循環や地球環境の維持に果たす役割の解明。 浮遊生物分野 微生物分野 底生生物分野 # **Division of Climate System Research** Explores climate formulation, its variability, and conducts basic research with regard to the whole climate system and its subsystems (atmosphere, ocean, land etc.) specifically using numerical modeling. #### **Department of Climate System Modeling** Develops climate system models and explores various climate phenomena through simulations. **Climate System Modeling Section Atmosheric System Modeling Section Ocean System Modeling Section Cooperative Climate Modeling Section** #### **Department of Climate Variability Research** Explores mechanisms of the climate variability using observations, numerical simulations, and by contrasting, analyzing, and combining those Climate Variability Research Section **Comprehensive Climate Data Analysis Section** Climate and Hydrology Research Section ## **Division of Ocean-Earth System Science** Designed to achieve an integrated and multilateral understanding of the ocean-earth system through basic research on ocean-physics, oceanchemistry, ocean-geosciences, and on interactions among the ocean. atmosphere, and ocean floor. #### **Department of Physical Oceanography** Works towards quantitative understanding of the ocean through observations, experiments, and theory of ocean circulation, and of water mass formulation, sea fluctuation, interaction of the atmosphere and ocean, ocean disturbance, and discovery of dynamic structure. **Ocean Circulation Section Dynamic Marine Meteorology Section** Ocean Variability Dynamics Section #### **Department of Chemical Oceanography** Promotes developments and applications of advanced analytical methods and explores biogeochemical cycles among the atmosphere, ocean, and ocean floor **Marine Inorganic Chemistry Section** Marine Biogeochemistry Section **Atmosphere and Ocean Analytical Chemistry Section** #### **Department of Ocean Floor Geoscience** Explores the dynamics of the ocean floor such as mid-ocean ridges, backarc basins, and plate subduction zones. Collects samples and analyzes the environmental history of earth recorded in marine sediments. **Marine Geology Section Submarine Geophysics Section** Ocean Floor Geotectonics Section ## **Division of Marine Life Science** Designed to achieve an integrated and multilateral understanding of the marine life system through basic research on the evolution, physiology, ecology, and resource management of marine life. #### **Department of Marine Ecosystems Dynamics** Explores life history, evolution, interactions, and dynamics of various groups of creatures that are important in marine ecology, and examines their contributions to the sustainability of marine ecosystems and the earth environment. **Marine Planktology Section Marine Microbiology Section Benthos Section** 50 52 55 59 # 海洋生命科学部門 ゲノムに刻まれた生物進化の歴史、生活史、回遊現象、環境適 応など、海洋における様々な生命現象の統合的な解明。 生理学分野 分子海洋生物学分野 行動生態計測分野 # 海洋生物資源部門 海洋生物資源の変動機構の解明と持続的利用のために、物理 環境の動態、資源生物の生態、資源の管理などに関する研究。 環境動態分野 資源解析分野 資源生態分野 # 研究連携領域 海洋に関わる様々な学問領域と連携し、海洋環境と関連した生物メカニズムの解明を行う一方、海洋政策を含めた研究、教育活動を実施します。 生物海洋学分野 海洋アライアンス連携分野 # 国際沿岸海洋研究センター 沿岸海洋学に関する総合的な研究を推進するとともに、研究フィールドに至近という立地を活かして三陸沿岸域における実証的研究を進め、共同利用・共同研究拠点の附属研究施設として国内関係機関等との共同研究および国際共同研究の企画・実施を行います。船舶を含む施設は2011年3月11日の地震と津波により破壊されましたが、部分的に復旧した施設で研究活動を再開しました。 沿岸生態分野 沿岸保全分野 生物資源再生分野(2012年度設置予定) 地域連携分野 ## 国際連携研究センター 国際的な政府間の取決めによる海洋や気候に関する学術活動、国際的な枠組で実施される日本の海洋科学・大気科学に関わる統合的な国際先端研究計画を推進・支援します。また、アジア諸国を始め世界各国との学術連携を通して学術交流や若手人材育成の基盤を形成します。 国際企画分野 国際学術分野 国際協力分野 # 地球表層圏変動研究センター 研究系の基礎的研究から創出された斬新なアイデアをもとに、次世代に通ずる観測・実験・解析手法と先端的数値モデルを開発し、過去から未来までの地球表層圏システムの変動機構を探求します。既存の専門分野を超えた連携を通じて新たな大気海洋科学を開拓します。 古環境変動分野 海洋生態系変動分野 生物遺伝子変動分野 大気海洋系変動分野 #### **Department of Marine Bioscience** Synthetic exploration of various biological phenomena in the ocean such as the evolutionary history, life history, migration, and environmental adaptation of marine organisms that are inscribed in their genomes. Physiology Section Molecular Marine Biology Section Behavior, Ecology and Observation Systems Section # **Department of Living Marine Resources** Conducts research related to physical environmental dynamics, bioresource ecology, and resource management for the exploration of how marine life resources fluctuate and can be sustainably used. Fisheries Environmental Oceanography Section Fish Population Dynamics Section Biology of Fisheries Resources Section #### **Department of Collaborative Research** Explores the biological dynamics in the ocean environment by collaborating with various disciplines related with the ocean. The department also conducts research and educational activities including ocean policy. Biological Oceanography Section Ocean Alliance Section #### **International Coastal Research Center** The international coastal research center not only promotes integrated research on coastal oceanography but also conducts empirical research around Otsuchi Bay by taking advantage of the local environments near the center. The center plans and conducts cooperative research and international cooperative research with related institutions in Japan. Facilities and equipment, including research vessels, were destroyed by earthquake and tsunami on March 11, 2011. Scientific activities, however, was recommenced with repaired facility and renewed equipment. Coastal Ecosystem Section Coastal Conservation Section Coastal Ecosystem Restoration Section Regional Linkage Section #### **Center for International Collaboration** The Center for International Collaboration not only promotes and supports inter-governmental agreements on academic activities related with the ocean and climate but also integrates advanced international research plans for the ocean near Japan and for atmosphere science conducted within international frameworks. The center also creates a base for academic exchange and training of young scholars through academic collaboration with Asia and other countries. International Scientific Planning Section International Advanced Research Section International Research Cooperation Section #### **Center for Earth Surface System Dynamics** Based on creative ideas that are stimulated by the basic research of each research division, the center develops methods of observation, experiments and analysis, and advanced numerical models, and pursues an understanding of the mechanisms of the earth surface system change. The center develops a new atmosphere and ocean science through collaborations crossing traditional disciplines. Paleo-environmental Research Section Ecosystem Research Section Genetic Research Section Atmosphere and Ocean Research Section # システム研究系 # 気候モデリング研究部門 # 気候システムモデリング研究分野 ## **Division of Climate System Research,** Department of Climate System Modeling, Climate System Modeling Section 本分野では、気候システムモデルの開発・改良、そこに組み込まれ る物理化学過程のモデル化に取り組んでいます。また、開発・改良さ れたモデルを用いて過去・現在・将来の気候変動に関連した研究を 行っています。 惑星としての地球の気候は、太陽からの放射エネルギーと地球か ら放出される赤外放射のバランスで決定されます。従って、気候形成 の理解には、大気構造と放射の相互作用、それが引き起こす大循環 の様相を理解することが重要です。また、これらの相互作用が引き起 こす過去・現在・未来における気候変動、特に人間活動に伴う温室 効果ガスや大気汚染物質の増加による気候変動を理解する必要が あります。このような観点から、本分野では地球放射収支のモデリン グ、気候モデリングやリモートセンシングの技術を用いて、気候研究を 行っています。地球温暖化予測に重要な役割を果たす雲とエアロゾ ルの関係や大気中の微量成分の放射強制力なども調べています。 古気候研究においては、過去の気候環境を復元しその変動メカニズ ムを明らかにする研究を行っています。特に、コンピューターシミュレーショ ンの手法を用いて地球史上の過去の気候の再現が重要な研究課題 です。これらの研究によって、現在、我々が生きている時代の気候状態が どれほど普遍的なのか、それとも特異なのかを知ることができます。将来 予測に使用される気候システムモデルの検証もめざしています。 #### 現在の主な研究テーマ - ●地球気候における温室効果・日傘効果の役割 - ●地球温暖化と全球大気汚染の気候影響 - ●雲と大気汚染の相互作用 - ●氷期・間氷期サイクルのシミュレーションとメカニズムの解明 - ●古気候を利用した気候感度の推定 - ●将来の海水準予測とその不確実性 - ●大気・植生の相互作用 - ●大気・海洋・氷床の相互作用 気候系で起こ っている様々 な現象: 地球気候は太 陽放射エネルギーと地球が放出する地球放射エネルギーによってコントロールさ れている。自然起源や人間活動によって放出される微量気体やエアロゾルによっ て放射収支が変化し、さらに気候が変化する Various phenomena in the climate system: The earth's climate is controlled by a balance between solar and terrestrial radiative energy fluxes. Climate is changed by perturbation in the earth radiation budget caused by trace gases and aerosols emitted from natural and anthropogenic sources This section carries out studies for developing and improving global climate models and physical-chemical modules to be implemented in these models. These models are used to study the climate of the past, present, and future. The earth's climate is controlled by the balance between solar and earth radiation energies. It is, therefore, important to understand interactions between the earth-atmosphere system and radiation, and to understand the consequent effect on circulation. It is essential to understand past. present and future climate changes involving these interactions, particularly those associated with the increasing amount of greenhouse gases and air pollutants due to human activity. Research is conducted through climate modeling and remote sensing of the earth's system: important research subjects include understanding the role of atmospheric constituents, such as trace gases, aerosols and clouds, and evaluation of their radiative forcings, which are important for accurate simulation of global warming. The paleoclimate research aims to reconstruct past climate states and to understand the mechanisms of their changes. We attempt to simulate the past climate using numerical models. Studies provide information about the extent of the uniqueness of the current climate conditions and help evaluate climate system models that are used for projections of the future climate.
Ongoing Research Themes -120 -100 - Role of greenhouse and parasol effects in the earth's climate - Global warming and climate impacts of air pollutions - Interaction between clouds and air pollution - Simulation of glacial-interglacial cycles and investigation of their mechanisms - Estimation of the climate sensitivity based on the climate of the past - ●Future projection of sea level rise and evaluation of its uncertainty - Interaction between atmosphere and terrestrial vegetation Interaction between atmosphere, ocean and ice sheets - ₹520 ₹500 10 480 460 440 300 280 E 260 240 8 220 200 E -40 -80 Sea 過去約12万年前からの最終氷期サイクルにおける、日射、二酸化炭素濃度 海水準の変化(OBS:観測、IcIES:シミュレーション)とモデルにより再現さ れた最終氷期最盛期の氷床の鳥瞰図 Changes in insolation, carbon dioxide concentration, and sea level during the last glacial cycle starting around 120,000 years ago (OBS : observations, IcIES: model), and simulated ice sheet distribution at the last glacial maximum ABE-OUCHI, A. YOSHIMORI, M. 教授(兼) 中島 映至 NAKAJIMA, Teruyuki 准教授 阿部 彩子 Associate Professor ABE-OUCHI, Ayako 特任助教 吉森 正和 Project Research Associate YOSHIMORI, Masakazu NAKAJIMA, T. # 気候モデリング研究部門 # 大気システムモデリング研究分野 #### **Division of Climate System Research,** Department of Climate System Modeling, Atmosheric System Modeling Section 地球環境の現象解明や将来予測のためにはコンピュータシミュレーションは不可欠であり、我々の研究グループでは、地球規模から地域レベルに至る様々なスケールの大気環境モデルの開発を行っています。また、そのモデルを用いて大気中での様々な気象現象、大気汚染や気候変動の問題を研究しています。一方、人工衛星や地上観測のデータの取得、解析なども行い、モデルと組み合わせて総合的に大気環境を研究しています。 ## 現在の主な研究テーマ #### ●対流圏・成層圏の気象力学 対流圏や成層圏に生起する様々な気象現象と、より大きな気候場との相互作用プロセスについて考察します。梅雨前線や熱帯収束帯、それらに伴うメソ擾乱と気候との相互作用の解明も目指します。また、夏季・冬季モンスーン等を対象とした気象力学的な研究も行っています。 #### ●化学気候モデルをもちいた研究 大気中の化学過程と気候との関係について研究しています。 特に、対流圏物質輸送とオゾン等の大気汚染の考察、化学 気候モデルを用いたオゾンホールの将来予測実験などを行っ ています。 #### ●人工衛星開発支援とデータ解析 地球環境観測用の人工衛星開発支援と併せ、観測データの 解析手法を開発しています。また、実際の観測データの解析 を行い、温室効果気体の循環に関する研究を行っています。 #### ●数値シミュレーションによる温室効果気体の収支解析 二酸化炭素やメタンなどの温室効果気体を対象とした物質循環モデルの開発と、そのモデルを用いた発生源、吸収源の推定に関する研究を行っています。 観測データ解析におけるデータフローの概念図 Schematic depicting data flow in observational data analysis Computer simulation is an important tool for investigating the global environment and predicting its future climate. Our research group has been developing numerical models simulating atmospheric phenomena with scales varying from regional to global. Observation and data analyses are also an important part of our research. Our mission is to understand the atmospheric environment comprehensively through the combination of observations and computer simulations. #### **Ongoing Research Themes** - Dynamic Meteorology: Studies of meteorological phenomena, including generation mechanisms and climate variations of meso-scale disturbances interacting with climate. - Chemical climate models studies: Research into atmospheric chemical processes interacting with climate using chemical climate models. Important examples are ozone-hole prediction and air pollution problems. - Remote sensing of the atmospheric environment: Development of new algorithms for analyzing satellite data to study the atmospheric environment. Furthermore, we develop ground-based remote sensing techniques using infrared radiation. - Simulation studies on the greenhouse gas budget: Numerical simulations of greenhouse gases such as carbon dioxide and methane, and source/sink inversion analyses of gases using chemical transport models. 化学気候モデルでシミュレートされた全球的大気汚染 Global atmospheric air pollution simulated by a chemical climate model TAKAHASHI, M. IMASU, R. 教授 Professor 准教授 高橋 正明 TAKAHASHI, Masaaki 今須 良一 Associate Professor IMASU, Ryoichi # システム研究系 # 気候モデリング研究部門 # 海洋システムモデリング研究分野 #### **Division of Climate System Research,** Department of Climate System Modeling, Ocean System Modeling Section 海洋と大気の間では気候を形作る上で重要な熱・水や二酸化 炭素などの物質が常に交換されており、それらは海洋中に大量に 蓄えられ、海流によって輸送されます。そうした海洋の作用は、日 や年という短い時間スケールの気候変動を穏やかにする一方、 十年や百年という長い時間スケールの気候変動を引き起こしま す。特に長い時間スケールを持つ気候変動において、全球規模 の海洋循環による熱や溶存物質の輸送は重要な役割を果たし ますが、海洋観測には多くの困難が伴うため、その実態には不明 な部分が多く残されています。限られた観測データをもとに海洋 大循環の実態を解き明かすために、あるいは将来の海洋・気候 の変動を予測するために、海洋大循環の数値モデリングは今や 欠かせない研究手段となっています。 一方、モデリングの道具である数値海洋モデルも未だ完全な ものではありません。海洋システムモデリング分野では、海洋モ デリングのための数値モデルを開発しながら、様々な時間・空間 スケールを持つ海洋現象にそれを適用し、あるいはそれを大気 など他の気候システム要素のモデルと結合した気候モデルを用 い、海洋そのものと海洋が気候において果たす役割を解き明か すための研究を行っています。 #### 現在の主な研究テーマ #### ●海洋大循環のモデリング 海洋大循環は、乱流混合などのミクロな物理現象と、海洋全 体の熱収支などのマクロな側面の両方にコントロールされま す。その両方の視点から、海洋大循環のコントロールメカニズ ムを解き明かす研究を行っています。 #### ●極域海洋プロセスのモデリング 海洋深層循環の起点となる深層水形成は、主に極域海洋のご く限られた領域で生じます。海氷過程など、そこで重要となる 特有の海洋プロセスの詳細なモデリングを通して、深層水形 成に重点を置いた研究を進めています。 #### ●古海洋モデリング 海洋深層循環の変化は、過去の大規模気候変動と密接に関 係していることが知られています。現在とは異なる気候状態が どのように実現されたのか、そのメカニズムを調べるための研 究を行っています。 #### ●海洋物質循環モデリング 海洋中に存在する様々な物質の輸送や状態変化は、気候や 生態系のあり方を決める重要な要素です。そうした要素をモデ リングに取り込み、海洋物質循環の実態を解き明かすための 研究を行っています。 The ocean stores and transports a vast amount of heat and various dissolved substances, whose exchange with the atmosphere plays an important role in controlling the climate. There still remain many unknown aspects in the ocean as its observation is difficult. Numerical modeling is now becoming an indispensable method to study the ocean. Our group investigates various oceanic phenomena and their influences on the climate by developing and applying numerical models of the ocean. #### **Ongoing Research Themes** - Ocean general circulation modeling: The ocean general circulation is controlled by both microscopic physical processes and the macroscopic budget of heat and substances. We are striving for revealing the controlling mechanisms of the general circulation of the ocean from both perspectives. - ●Polar ocean process modeling: Deep water formation, which is the starting point of the oceanic deep circulation, is a highly localized phenomenon in the polar oceans. We place a special emphasis on the processes peculiar to the polar oceans. - Palaeo-ocean modeling: Past drastic changes of the climate are known to be closely linked to those of the oceanic deep circulation. We are investigating the mechanisms by which such different states of the climate were caused. - •Biogeochemical cycle modeling: Transport and state transition of various substances in the ocean are essential factors controlling the state of the climate and ecosystem. We are studying the ocean biogeochemical cycles by introducing such factors into the modeling. 海洋大循環とそれに関わる局所現象のモデリング例 Examples for modeling of the ocean general circulation and various associated localized phenomena HASUMI, H. OKA. A. 准教授 Associate Professor 講師 Lecturer 羽角 博康 HASUMI, Hiroyasu 岡顕 OKA, Akira # 気候変動現象研究部門 # 気候変動研究分野 #### **Division of Climate System Research,** Department of Climate Variability Research, Climate Variability Research Section 気候システムモデルによる長期シミュレーションのデータ、および、観測された気候データを用い、エルニーニョなどの気候システム変動の解析研究を行います。また、気候モデルを用いて年々~数十年先の気候変動予測の研究などを行います。 さまざまな時間空間スケールの気候変動現象を理解することがわれわれの研究の大きな目標です。よりよい理解はよりよい予測にもつながります。観測データの解析はもとより、気候システム研究系で開発された気候モデルを縦横に駆使して、異常気象をもたらす季節~年々の自然変動や、人為要因による地球温暖化などさまざまなスケールの気候変動現象のメカニズム解明に挑んでいます。気候のコンピュータモデルは、室内実験の困難な地球科学において、仮説検証の有力な手段となります。数値実験を通して、観測データだけではわからない複雑な相互作用を解明することができます。したがって、モデルの精度向上はよりよい気候変動の理解に欠かせません。地球シミュレータや次世代スパコンなどの大型計算機を用いた研究プロジェクトも推進しています。 #### 現在の主な研究テーマ - ●異常天候の要因解明 - ●大気海洋結合系での気候変動の解明 - ●十年規模の自然変動を含む近未来気候変動予測 - ●次世代気候モデルの開発 夏季東アジアの自然変動 (上) と温暖化時の変化 (下) パターン Spatial patterns of year-to-year natural variability (top) and change under a global warming scenario (bottom) for the East Asian summer climate. Climate variability is studied through both detailed analyses of global, long-term observational data and through numerous numerical experiments based on climate models. The target of this research encompasses interannual to interdecadal climate variability, including global warming. One of our research objectives is to understand climate variability on wide temporal and spatial scales. This is important because better understanding leads to better predictions. In addition to analyses of observed climate data, by actively using climate models developed at the Division of Climate System Research, we attempt to elucidate climate variations, ranging from seasonal to interannual, as well as global warming due to human activities. Computer models of climate are a powerful research tool for hypothesis verification in the field of Earth sciences, in which laboratory experiments are difficult. In the case where observational data analyses are not sufficient, carefully designed numerical experiments can reveal complicated interactions among the climate subsystems that lead to climate variations. Therefore, improvement of climate models is an indispensable part of climate variability studies. We are conducting research projects using world-class high-speed computers such as the Earth Simulator and the Next-Generation, "K", computer. #### **Ongoing Research Themes** - Studies on anomalous weather and low-frequency atmospheric variability - Studies on coupled ocean-atmosphere climate variability - Decadal prediction of climate variability and change - Development of next-generation climate model 2007-2009年平均の全球地表気温の観測(上)と2006年1月を初期値とする予測(下) Global surface air temperature anomaly. Average for years 2007-2009. Observation (top) and prediction starting January 2006 (bottom). KIMOTO M MIURA, H. 教授 木本 昌秀 Professor KIMOTO, Masahide 特任助教 三浦 裕亮 Project Research Associate MIURA, Hiroaki # 気候 システ<u>ム研究系</u> # 気候変動現象研究部門 # 気候データ総合解析研究分野 ## **Division of Climate System Research,** Department of Climate Variability Research, Comprehensive Climate Data Analysis Section 地球の気候形成には、雲・雨・海水・水蒸気と様々な形態の水が重要な役割を果たしています。水の介在によって、雲粒の生成からエルニーニョまで時間空間スケールの異なるいろいろな現象が互いに影響し合います。本分野では、その複雑な気候システムの形成と変動の仕組みをひも解くため、人工衛星によるリモートセンシングデータなどの地球規模の観測データと気候モデルとを用いて研究しています。 青い地球を覆う雲は地表面を冷やす効果も暖める効果も持っています。熱帯の積雲対流は海面から上空に熱エネルギーを持ち上げます。地球規模のエネルギー循環の鍵を握る雲降水システムの役割を定量化するには、衛星観測データが有効です。エルニーニョや10年規模変動など、さまざまな時間スケールの大気海洋結合系変動について、生成・維持機構を調べ予測可能性を解明するには、気候モデルが有用です。温暖化などの気候変化に伴い、それらがいかに変化するかを推定することも、モデル実験の重要な課題です。また、社会的に影響の大きい異常気象について、北極振動などその背景にある大気循環の力学過程を、気候モデル・力学モデル・予報データなどを用いて解明することも目指します。 #### 現在の主な研究テーマ - ●衛星観測データを用いた雲降水システムの解析 -
●熱帯気象が気候形成に果たす役割の解明 - ●気候モデルを用いた気候変化および気候変動の研究 - ●異常気象の力学的研究 Various forms of water such as clouds, rain, sea, and vapor, play crucial roles in the formation of the Earth's climate. Through the agent of water, various phenomena with different spatial and temporal scales, from the formation of cloud droplets to El Niño, interact with each other. In the Comprehensive Climate Data Analysis Section, we utilize satellite remote sensing data and climate models, in order to reveal the structure of such intricate aspects of Earth's climate. Clouds have both warming and cooling effects of the earth surface. Cumulus convection in the tropics lifts the energy from the earth surface to the upper air. We use the satellite remote sensing data to quantify the roles of cloud and precipitation systems in the formation of the earth climate. We extensively use a global climate model called MIROC, developed in our division, for exploring mechanisms of natural climate variability such as El Niño and decadal variability. MIROC can also be used to evaluate future changes in the properties of these natural phenomena in response to increasing greenhouse gases. Moreover, dynamical processes responsible for the large-scale circulation variability such as the Arctic Oscillation/North Atlantic Oscillation are examined by means of climate models, dynamical models, and operational forecast data. #### **Ongoing Research Themes** - Satellite data analysis of cloud and precipitation systems - Roles of tropical multi-scale interactions in climate formation - Climate modeling for understanding climate change and climate variability - Dynamics of weather variability 2.0km 熱帯降雨観測計画 (TRMM) 衛星データから推定した大気上層・下層の積雲 対流加熱分布。大気循環と結びついている Upper and lower tropospheric cumulus convective heating estimated with TRMM satellite data. This is closely linked to the large-scale atmospheric circulation エルニーニョに伴う海面水温の平年偏差。(上)観測値、(下)気候モデル MIROCの結果。 再現性が非常によい Anomalies in sea surface temperature associated with EI Niño based on (top) observations and (bottom) the climate model MIROC 高薮 縁 渡部 雅浩 TAKAYABU, Yukari N. 30 Associate Professor WATANABE, Masahiro 特任助教 横井 覚 Project Research Associate YOKOI, Satoru 教授 准教授 WATANABE, M. # 気候 システム研究系 # 気候変動現象研究部門 # 気候水循環研究分野 #### **Division of Climate System Research,** Department of Climate Variability Research, Climate and Hydrology Research Section 地球水循環は、気候変動によって大きな影響を受け、人類にとって最も大きな影響を及ぼします。本分野は、地球上の水循環を幅広く捉え、様々な角度からのアプローチでそのメカニズムを解明し、社会への貢献を目指しています。特に「水の安定同位体比」という指標を用いて、地球水循環と気候との関係性を明らかにする研究に注力し、さまざまな数値モデルや衛星データを用いた研究を行っています。 水の中の水素安定同位体比 (D/H) 或いは酸素安定同位体比 (18O/16O) または 17O/16O) は、地球上において時間的・空間的 な大きな偏りを持って分布しているため、私たちはそれらを観察することによって水を区別することが可能となります。また水の安定同位体比は水が相変化する際に特徴的に変化するため、相変化を伴って輸送される地球表面及び大気中での水の循環を逆推定する有力な材料となります。当分野では、この水同位体比の特徴を大循環モデルに組み込むことによって、複雑な地球水循環システムにおける水の動きを詳細に追跡しています。同時に、東京大学生産技術研究所とも連携し、そちらに設置された同位体比分析計等を用いて地球上様々な場所での雨や地表水、水蒸気等を採取し、観測しています。さらに、人工衛星や地上に設置した分光分析計を用いて、水蒸気の安定同位体比の空間分布と時間変化を観測しています。 #### 現在の主な研究テーマ ●水の安定同位体比を用いた地球水循環システム解明 観測データの解析とモデリングによって、様々な状態の水の同位体比と地球水循環システムの関係性について研究しています。 ●河川モデル・地表面モデルを用いた陸面水・エネルギー循環に関 する研究 地表面並びに河川が持つ、地球水循環システムにおける物理 的役割や人間活動や生態系との相互影響について、主にモデ リングを利用して研究しています。 ●力学的ダウンスケーリング手法に関する研究 領域気候モデルや大気大循環モデルを用い、粗い大気情報 を細かい解像度にまでダウンスケーリングする手法の開発に 携わっています。 ●衛星から観測された水蒸気同位体比のデータ同化に関する研究 人工衛星に搭載した赤外分光センサーを用いた水蒸気同位 体比観測値と、同位体大気大循環モデルによる予報値とデー タ同化する手法を構築しています。 Climate and Hydrology Research Section focuses on various interdisciplinary areas, including global and regional meteorology, land surface and atmospheric hydrology, and paleoclimatology, all of which are bridged by natural isotopic tracers. The main thrust of our effort is toward better understanding of the Earth's climate system. This is explored both by utilizing additional information obtained from isotopic records and by developing models that simulate the observed processes. Since stable oxygen and hydrogen isotope ratios in water (D/H, $^{18}O/^{16}O,\,^{17}O/^{16}O)$ are sensitive to phase changes of water during circulation, geographic and temporal variations of the isotopic ratios emerge in water vapor and precipitation. Therefore, researchers can study atmospheric vapor cycling processes at various scales, such as large-scale transport and in-cloud processes by using isotopic information in precipitation and vapor. In this section, by incorporating the isotopes into global and regional climate models, the relationship between atmospheric and land surface processes and isotopic information in water vapor and precipitation has been intensively studied. #### **Ongoing Research Themes** - Study on processes of Earth's hydrological cycle with stable water isotopes - Study on terrestrial hydrological cycles and development of river and land surface models - Dynamical downscaling and development of a Regional Earth System Model - Data assimilation, particularly for stable water isotopes with the ensemble Kalman filter 水蒸気柱の平均同位体比 (δ D) の季節平均気候値に関する、人工衛星 Envisatに搭載した分光分析計SCIAMACHYによる観測値 (左) と同位体大循環モデルIsoGSMによる推定値 (右) Comparison of MAM climatology of water vapor isotope ratio (δ D) between remote sensing observation with SCIAMACHY/Envisat (left) and model estimation with IsoGSM (right) 准教授 Associate Professor 芳村 圭 YOSHIMURA, Kei YOSHIMURA, K. # 海洋地球 システム研究系 # 海洋物理学部門 # 海洋大循環分野 ## **Division of Ocean-Earth System Science**, Department of Physical Oceanography, Ocean Circulation Section 世界の海を巡る海洋大循環は、熱や塩分、二酸化炭素などの 温室効果気体、浮遊生物や生物に必要な栄養塩などを運び、熱 や物質の循環、海域特有の水塊の形成と輸送、海洋生物の生 育などに寄与し、地球の気候や海水構造および海洋の生態系 に大きな影響を与えています。 日本列島の東では、南から温かい海水を運んでくる黒潮と北 から冷たい海水を運んでくる親潮が接近してともに東向きに流 れ、複雑な海洋構造をつくり出しています。これらの海流は、北 太平洋の表層循環である亜熱帯循環と亜寒帯循環を形成し、 数年から20年程度の規模の気候変動や生態系変動に大きな影 響を与えています。一方、2000m以深を流れる深層循環は、海 洋の水塊分布や長期特に百年以上の規模の気候変動に支配的 な役割を果たしています。これは、北大西洋の極域で冬季に沈 降した海水が南下して南極周極流に合流し、その一部が太平洋 を北上して北太平洋で湧昇するという雄大な海水循環です。そ の終着点である北太平洋での循環構造の理解は、深層循環の 全体像を理解するために極めて重要です。また、深層循環の減 衰は地球温暖化に拍車をかけるので監視が必要です。 海洋大循環分野は、こうした海洋循環の実態と力学、および 海洋循環が水塊の形成や分布に果たす役割の解明を目指して おり、特に北太平洋での研究に力を入れています。 #### 現在の主な研究テーマ #### ●太平洋表層の海洋構造の変動解明 表層の海洋循環やそれに伴う水温・塩分構造の変動は、気 候や水産資源の変動に大きな影響を与えます。世界規模の自 動観測網や私たちの観測によって得られた水温・塩分などの データの解析により、その実態解明をめざしています。 #### ●太平洋深層循環の解明と監視 深層循環の終着点である北太平洋は、深層水の特性の薄ま りと海底地形の複雑さのために研究の難しい海域です。そこ で、海水特性を高精度で測定して丹念に分析し、係留系によ る長期連続測流で正確な流速・流量を評価し、深層循環の実 態を明らかにしています。 #### ●北東太平洋海盆での深層水の湧昇の実態と力学 深層循環の要である深層水の湧昇がどのようにして起きている のかは、海の最も大きな謎のひとつです。私たちは、研究船によ る観測とモデル計算により、北東太平洋海盆での深層水の湧 昇の実態と力学を調べています。 General ocean circulation plays a large role in the global climate, environment, and ecosystems by transporting heat, greenhouse gases, nutrients, and plankton. The Kuroshio and Oyashio currents form the upper-ocean circulation and build a complicated ocean structure in the region east of Japan and influence climate and ecosystem variability on interannual to bidecadal timescales. Climate variability with longer time scales of particularly more than a hundred years is affected by the global deep circulation. It starts from the North Atlantic, flows through the Antarctic Ocean, and finally reaches the North Pacific where upwelling to the shallower deep layer occurs. The deep circulation is also a key element in global warming and should be monitored. We investigate the properties and dynamics of general ocean circulation including the formation, distribution, and variation of water masses. We primarily focus on the ocean circulation of the North Pacific. #### **Ongoing Research Themes** - ●Variability of upper ocean circulation in the Pacific: Variations of currents and the associated temperature/salinity structure in upper oceans have a great impact on variations of climate and fisheries resources. We study these variations by analyzing the data from a recently developed global observing system and our observations. - Clarification and monitoring of deep circulation in the Pacific: The North Pacific is critically important for understanding deep ocean circulation, but presents many challenges, including diluted water mass characteristics and complex bottom topography. We seek to clarify and monitor the pathway and volume transport of deep circulation using CTD and moored current meters. - Dupwelling of deep circulation in the Northeast Pacific Basin: The mechanism of upwelling of deep circulation is one of the biggest questions in oceanography. We investigate the state and dynamics of deep-water upwelling in the Northeast Pacific Basin using shipboard observations and model calculations. 係留流速計の回収作業 Recovery of a mooring of current meter KAWARE M OKA, E. YANAGIMOTO, D. 教授 准教授 Associate Professor Research Associate 川邉 正樹 KAWABE, Masaki 岡 英太郎 OKA, Eitarou 柳本 大吾 YANAGIMOTO, Daigo # 海洋地球 システム研究系 # 海洋物理学部門 # 海洋大気力学分野 #### **Division of Ocean-Earth System Science**, Department of Physical Oceanography, Dynamic Marine Meteorology Section 地球の気候を支配している大気と海洋は、海面を通して互い に強い相互作用を行う複雑な結合システムを構成しています。潮 汐を除くほとんどの海洋の運動は、大気が海面に与える風の応 力や熱・水などのフラックスによって駆動されています。一方、海 面から供給された熱や水蒸気は大気中の対流や低気圧など、さ まざまなスケールの擾乱の発生・発達に大きく影響しています。 このように複雑なシステムの振る舞いを正確に把握し、精度良 く予測するためには、対流や乱流をはじめとする大気・海洋の基 礎的な過程に関する理解が不可欠であることが、以前にも増し て強く認識されてきています。本分野では、大気と海洋の相互作 用に関わる対流・乱流・低気圧など、さまざまな大気・海洋擾乱 の実態・構造・メカニズムを観測データの解析・数値シミュレー ション・力学理論・室内流体実験などの多様な手法により解明 しています。 #### 現在の主な研究テーマ #### ●日本周辺の海洋上に発生する大気擾乱の研究 冬期に大陸から寒気が流出すると、日本周辺の海洋上では活 発な大気・海洋相互作用が起き、筋状に並んだ対流雲やポー ラーロウ(水平スケールが数100km程度のメソ低気圧)などが 発生して、豪雪や高波などを生じます。一方、梅雨期には、活発 な対流雲の集まりを伴うメソ低気圧が梅雨前線上の東シナ海 に発生して西日本に集中豪雨をもたらします。これらの低気圧 では対流雲と低気圧の渦が複雑な相互作用をしており、その構 造や力学過程の解明は防災上も気象学上も急務です。 #### ●対流雲の形態・組織化機構と集中豪雨の研究 組織化された対流雲は、局地的な強風や集中豪雨の原因と なります。また、対流雲による鉛直方向の熱輸送は地球の気 候に大きな影響を与えるため、その形態と組織化機構の研究 は重要です。 #### ●大気・海洋間のフラックスに関する研究 台風は海面から供給される水蒸気をエネルギー源として発達す る一方、その強風により海中に活発な混合、湧昇、内部波など を励起します。また、大気・海洋は海面での運動量の交換を通し て固体地球の回転の変動にも寄与しています。大気・海洋間の 物理量の交換に関わる大気・海洋境界層の乱流機構やその結 果生ずる大気・海洋擾乱の機構の解明は大気・海洋相互作用 の理解に不可欠です。 #### 室内実験による大気・海洋擾乱の研究 大気・海洋擾乱の基礎的過程を、最新の機器を用いた回転成 層流体実験によって解明しています。 The earth's climate is regulated by the atmosphere and oceans, which interact strongly and constitute a complex coupled system. Most oceanic circulation, except for tidal motion,
is caused by atmospheric forcing such as wind stress, surface heating/cooling, evaporation, and precipitation. Much atmospheric circulation, on the other hand, is forced by sensible and latent heat fluxes through the sea surface. To understand such a complex system and to predict its behavior reliably. it is important to investigate the basic processes of atmospheric and oceanic circulation such as turbulence, convection, and instabilities. Our group studies the behavior, structure, and mechanisms of various atmospheric and oceanic disturbances, which play important roles in atmosphere-ocean interactions, through observation, numerical simulation, theory, and laboratory experiments. #### **Ongoing Research Themes** - Atmospheric disturbances over the oceans around the Japanese islands: Meso-scale and synoptic-scale cyclones in which interactions among the vortex, convective clouds, and sea surface fluxes play important roles are investigated. These include polar lows that develop during cold air outbreaks, mesoscale cyclones that bring torrential rainfall during the Baiu/Meiyu season, typhoons, subtropical cyclones, and rapidly-developing extratropical cyclones. - Dynamics of Convective cloud and their organization - Atmospheric and oceanic boundary lavers - Laboratory experiments on atmospheric and oceanic disturbances 本分野の研究例 Examples of ongoing research 数値実験で得られたポーラーロウ(左上)と梅雨期の降水バンドの南北断面 (右上)。亜熱帯低気圧のレーダー画像(左下)と回転系の水平対流の室内実 Numerically simulated polar low (upper left), meridional cross-section of numeically simulated rainband (upper right), radar image of subtropical low (lower left; coutesy of Japan Meteorological Agency) and horizontal convection in a rotating tank experiment (lower right) YANASE W 准教授 Associate Professor 教授 Research Associate 新野 宏 NIINO, Hiroshi 伊賀 啓太 IGA, Keita 柳瀬亘 YANASE, Wataru # 海洋地球 システム研究系 # 海洋物理学部門 # 海洋変動力学分野 #### Division of Ocean-Earth System Science, Department of Physical Oceanography, Ocean Variability Dynamics Section 悠久の海も、日々、さまざまに変化しています。日変化や季節 変動はもっとも顕著ですが、そのほかにも数ヶ月あるいは数年、 数十年の周期で水温や海流が変化していることが知られるよう になってきました。これら変動の多くは、歴史的な観測データの 蓄積や、高精度で長期的、連続的な観測などによって、初めて明 らかとなったものであり、その原因はまだよくわかっていません。 しかし、海洋の変動は気候変動において支配的な役割を果たす ほか、水産資源の変動にも直結しており、その実態把握とメカニ ズムの解明は重要な課題です。 本分野では、これまで十分に検討されてこなかった海洋の変 動現象を主な研究対象としています。海洋観測を実施して、変動 の把握に努めるほか、数値シミュレーションを併用することで、よ り広い時空間での変動を捕らえる試みを行っています。さらに、 力学的な数値実験を行うことで、変動現象のメカニズムの解明 を目指しています。 #### 現在の主な研究テーマ #### ●深層流の時間変動の観測 停滞していると思われがちな深海にも十数cm/sもの流れがあ り、同程度の大きさで変動しています。流速計や水温・塩分計 を深海に長期係留して、変動の様子を観測しています。 #### ●深層循環の数値モデリング 深層循環は海底地形の影響を強く受けます。数値モデルを 使って、日本の東に連なる海溝など、特色ある地形の影響を調 べています。 #### ●海底ケーブルによる黒潮流量のモニタリング 黒潮の変動は日本の気候や漁業に大きな影響を持ちます。伊 豆諸島に敷設されている通信用海底ケーブルを使って、流量の 毎時計測を行っています。 The ocean has large temporal variations, even though it looks steady and unchanging. Daily and seasonal variations are well known, but many other variabilties have been discovered recently. Historical data over decades or the latest high-precision data reveal that water temperature and ocean currents vary at periods of months, years, and decades. However, the causes of this variability are still unknown, and further observation and dynamic speculation are necessary because this ocean variability is closely related to serious modern issues such as climate change and fishery resource variation. Our research targets the ocean variabilties that have been less questioned before. We conduct shipboard observations to gather highprecision data and use numerical simulations to extrapolate our limited knowledge in spatial and temporal dimensions. We also formulate theoretical models to investigate the dynamics of the variabilties. #### **Ongoing Research Themes** #### Observation of temporal variability of deep currents The deep ocean is not stagnant. Deep currents are widely distributed and highly variable, with mean velocities and fluctuation amplitudes each in excess of 10 cm/s. Long term observations of this variability though deployment of current meters and CTD sensors will clarify characteristics of the deep ocean. #### Numerical modeling of deep circulation Deep circulation is crucially influenced by bottom topography. Using numerical models, we investigate the influence of distinctive topographic features such as the chain of trenches east of Japan. #### ■Monitoring of the Kuroshio using submarine cables The variability of the Kuroshio influences the climate and fisheries in Japan. We measure its volume transport every hour using submarine communication cables between the Izu Islands. 日本海溝東方における深度4000mの流速観測 Deep current measurements at a depth of 4000 m east of the 地図上に係留期間ごとの平均流速ベクトルと標準偏差楕円 N3 を示す。色は、下段の時系列データに対応する The upper panel shows mean velocity vectors and standard deviation ellipses, and the lower panel shows their 4-year times series at two stations. Color represents the period of their deployments FUJIO, S. 准教授 Associate Professor 藤尾 伸三 ### 海洋化学部門 # 海洋無機化学分野 #### **Division of Ocean-Earth System Science**, Department of Chemical Oceanography, Marine Inorganic Chemistry Section 海水が塩辛いのは、海水中にナトリウムイオンや塩化物イオ ンなど、さまざまな元素が溶解しているためです。また、わずかで すが海水は濁っています。これは、生物体や陸起源物質に由来 する細かい粒子が漂っているためです。このように、海洋環境は さまざまな化学物質から構成されています。それらの複雑な分布 と挙動は、各物質が固有に持つ化学的性質、供給と除去の起 こり方、さらに海洋内での物理化学的あるいは生物学的過程に よって、巧みにコントロールされていると考えられます。本分野で は、海洋におけるこのような地球化学的物質サイクルについて、 大気圏、生物圏、および岩石圏との相互作用を経てどのように 進化してきたのかも含め、総合的に理解することを目指していま す。その上で、化石燃料二酸化炭素の放出等による地球環境の 変化に対し、海洋がどのように反応するのか、どのような役割を 果たしているのかについて解明しようとしています。これらの研 究を推進し新たな分野を開拓するために、白鳳丸・淡青丸などの 研究船や「しんかい6500」などの潜水船を活用し、また他の大 学・研究機関の多くの研究者とも共同で観測調査やデータ解 析を進めます。さらに国際的には、海洋の総合的な地球化学研 究に関わる共同プロジェクト、例えば、GEOTRACES, SOLAS, IMBER, InterRidge, LOICZ, IODPなどと密接に協調しつつ研 究を進めています。 #### 現在の主な研究テーマ - ●海水および堆積物(粒子物質および間隙水を含む)中の微量 元素(遷移金属、希土類元素、貴金属類など)、溶存気体、安 定同位体(H, C, O, N, Nd, Ce, Pbなど)、および放射性同位 体 (U/Th系列核種、14C, 222Rnなど) の生物地球化学的挙動 の精査と、人為的作用も含め、それらの時空間変動の要因を解 明します。 - ●グローバルな海洋循環、混合、生物生産と分解、大気ー海洋、 海ー陸相互作用など、さまざまな現象のトレーサーとして、化 学成分および同位体を活用した研究を行います。 - ●中央海嶺や島弧・背弧海盆における海底熱水活動、プレート沈 み込み帯における冷湧水現象、沿岸域における海底地下水湧 出現象などに伴う、海洋と固体地球との間の地球化学フラック スを解明します。 - ●高精度化学分析手法をはじめ、クリーンサンプリング手法、現 場化学計測法など、新しい技術の開発と応用を行います。 Various chemical components constitute the oceanic environment, and their complex distribution and behavior are controlled by their chemical properties, sources and sinks, as well as physicochemical and biological processes. Our main goal is to comprehensively understand geochemical cycles in the ocean and their evolution through interactions with the atmosphere, biosphere, and lithosphere, on the basis of chemical and isotopic measurements. We aim also to elucidate the oceanic response to natural and anthropogenic perturbations such as emission of fossil fuel carbon dioxide. We collaborate at sea with many marine scientists and actively participate in topical international projects such as GEOTRACES, the Surface Ocean Lower Atmospheric Study (SOLAS), Integrated Marine Biochemistry and Ecosystem Research (IMBER), International Cooperation in Ridge-Crest Studies (InterRidge), Land-Ocean Interactions in the Coastal Zone (LOICZ), the Integrated Ocean Drilling Program (IODP), etc. #### **Ongoing Research Themes** - Biogeochemical characterization of trace elements, major and minor dissolved gases, stable isotopes, and radioisotopes in seawater and sediment, for assessment of oceanic processes controlling their spatial and temporal variations, including anthropogenic effects. - Application of chemical components and isotopes as tracers for various phenomena, such as global ocean circulation, mixing, biological production and degradation, and air-sea and landocean interactions. - Elucidation of geochemical fluxes between the ocean and solid earth through submarine hydrothermal activity, cold seepage, and submarine groundwater discharge. - Development of new technologies for clean sampling, in situ observations, and highly sensitive chemical analyses. 研究船淡青丸における大量採水器を用いた観測作業 (日本海にて) Large volume water sampling on board R/V Tansei Maru (Japan Sea) NAKAYAMA, N. 准教授 Associate Professor Research Associate 教授 蒲生 俊敬 GAMO, Toshitaka 小畑 元 OBATA, Hajime 中山 典子 NAKAYAMA, Noriko ### 海洋化学部門 ## 生元素動態分野 ### Division of Ocean-Earth System Science, Department of Chemical Oceanography, Marine Biogeochemistry Section 海洋における生元素(炭素・窒素・リン・珪素・イオウなど)の サイクルは、多様な海洋生物による生化学的変換プロセスと物 質移動を支配する物理学的プロセスとの複雑な相互作用によっ て駆動され、大気や陸域における元素循環過程と連動しつつ地 球環境に大きな影響をおよぼしています。近年、人類による物質 循環系の攪乱と、その結果としての地球温暖化や生物多様性の 大規模な消失といった環境問題が顕在化・深刻化し、生物圏と 地球環境の相互作用の仕組みとその変動要因を明らかにする ことは人類にとっての急務とされています。しかし、グローバル・ス ケールでの海洋物質循環とその制御機構に関する知見は十分 でなく、特に生物の深く関与する非定常プロセス、局所的プロセ スに関しては、その重要性にもかかわらずなお未知の領域を多く 残しています。 本分野では、生元素循環の素過程を担う多様な生物群集に よる代謝ネットワークの進行する場の解析と制御メカニズムの 解明、および生物代謝が環境中の物質の分布と輸送に果たす 役割の解明を大目標に掲げ、新しい技術や方法論の開発、モデ ル実験や理論的アプローチによるプロセス研究、研究船航海 や調査旅行によるルーティン観測作業を3つの柱として研究を 進めています。河口・沿岸域から外洋に至るさまざまな場におい て個々のテーマに基づく基礎的研究に取り組んでいるほか、有 機物・栄養塩の精密分析、軽元素同位体比分析、同位体トレー サー法、光学的粒子解析技術を駆使して大型共同プロジェクト の一翼を担うことにより、時代の要請に対応した分野横断的な 海洋研究を目指しています。 #### 現在の主な研究テーマ - ●海洋の生物地球化学的循環におけるウィルスの役割 - ●海洋における微生物食物網の構造と役割 - ●海水中の難分解性溶存有機物の構造とその分解を阻害してい る因子の研究 - ●大気海洋炭素循環モデルにおける化学パラメータの精密観測 - ●熱帯~温帯沿岸生態系 (特に大型底生植物群落) の生態学的 機能とその保全 - ●海洋窒素循環と有機物の分解過程における微生物学的酸化還 元プロセスの役割 - ●炭素・窒素の安定同位体比を用いた物質循環・食物連鎖解析法 の開発とその応用 The distribution and circulation of biophilic elements such as carbon (C), nitrogen (N), phosphorus (P), silicon (Si), and sulfur (S) in the ocean are regulated by both physical transport processes and biochemical transformation by various organisms. These elements may occur in volatile, dissolved, or particulate forms, and thus their biogeochemical cycles in the ocean are closely linked with those in the atmosphere and the lithosphere. Because of its large capacity, the sea plays a crucial role in maintaining the global cycles and balance of these elements. Research in our laboratory is concerned primarily with the dynamics of biophilic elements in marine environments and their coupling with metabolisms of marine organisms. Emphasis is placed on identification of various biochemical processes operating in the water column and upper
marine sediments, and their regulation and interaction. #### **Ongoing Research Themes** - Role of viruses in marine biogeochemical cycles - Structure and function of microbial food webs in the oceans - ●The nature of refractory dissolved organic matter in oceanic waters - Determination of chemical parameters used in global circulation models - Conservation ecology of macrophyte-dominated coastal ecosystems - ●The roles of microbial redox processes in marine sediment biogeochemistry - Application of stable isotopic techniques to the evaluation of ecosystem status "Biological pump" 教授 微生物と有機物の相互作用による海洋生元素循環の駆動(研究テーマの例) Marine bioelement cycles driven by microbe-organic matter interactions MIYAJIMA, T. NAGATA T OGAWA, H. NAGATA, Toshi 小川 浩史 准教授 Associate Professor OGAWA, Hiroshi 助教 Research Associate 宮島 利宏 MIYAJIMA, Toshihiro 永田 俊 ### 海洋化学部門 # 大気海洋分析化学分野 #### **Division of Ocean-Earth System Science**, Department of Chemical Oceanography, Atmosphere and Ocean Analytical Chemistry Section 人類はこれまで陸域を活動の場として発展してきましたが、海 洋はその2倍以上の面積を持ち、地球環境と生命活動に重要な 役割を果たしています。地球環境に関わる海洋システムの研究、 すなわち海洋の持つ地球環境保全機能の定量化とその科学的 理解は、地球環境と調和した社会を実現するために不可欠で す。太古から現代に至る変遷をとげてきた海洋は時空間的に連 続したひとつのシステムをなしており、我々は多角的な視野から 最先端の観測機器・分析技術・解析手法を駆使して海洋環境 の包括的理解を目指しています。 本分野では、地球内部の物質から地球外物質までを研究対 象とし地球を一つのシステムとしてとらえ同位体化学の側面から 物質循環過程や地球環境に関する研究を行っています。最新の 技術や高精度の計測機器類を導入することで高密度観測や高 感度分析等の先端的解析手法を開発し、希ガス同位体の高精 度分析やNanoSIMS50を用いたミクロン領域での微量元素分 析を主な研究手法としています。海洋大循環や物質循環過程を 解明するために、海水や陸水、堆積物や大気など様々な地球惑 星科学物質の希ガスを精密に測定し研究を行っています。また 地球環境問題に対する海洋の役割を解明するために、生物骨 格や殻などの炭酸塩やリン酸塩あるいは堆積物の微量元素を 精密分析し研究を行っています。これらの研究を行うために、白 鳳丸や淡青丸などの研究船を用いた観測・試料採取を行い、研 究所内外の研究者と共同で研究を進めています。 #### 現在の主な研究テーマ - ●希ガス元素をトレーサーとした海洋循環および海洋物質循環 - ●海洋生物化石やマンガンクラストを用いた長期環境変動の解析 や古環境復元 - ●海成炭酸塩および海成リン酸塩の地球化学的研究 - ●海成堆積岩の微小領域のU-Pb同位体年代測定 - ●二次イオン質量分析計を用いた惑星海洋学 - ●トリチウムーヘリウム-3法に基づく海水・地下水の年代測定 - ●地下水や温泉水、火山ガス、海底熱水、大気に含まれる揮発性 成分の物質循環 The ocean, covering 70% of the Earth, is deeply related to several environmental issues including global climate change, and may be the last possible area for humans to obtain new biological and mineral resources. Japan is surrounded by the ocean, so there is a strong emphasis on gaining scientific understanding and quantitative estimation of how the ocean influences the earth's environment. The marine environment is a complex physical and biological system that requires comprehensive research of the whole system in both space and time. Using the most advanced observational and analytical techniques, the present state of the marine environment is studied accurately, precisely and thoroughly, in collaboration with researchers from other laboratories. #### **Ongoing Research Themes** - Ocean circulation using noble gas isotopes - ●Paleoenvironmental reconstruction using natural archives such as microfossils and ferromanganese crusts - ●Geochemical studies of marine carbonate and phosphate - •U-Pb dating in ultra-fine areas of sedimentary rocks - Planetary oceanography using an ion microprobe - ●Tritium helium-3 dating of seawater and groundwater - Material cycle of volatile elements in groundwater, spring water, volcanic gas, hydrothermal water and atmosphere samples 最先端分析機器の1つである、超微小領域を分析できるイオンマイクロプローブ Ion microprobe for trace element and isotopic analysis of ultra-fine features TAKAHATA N 教授 佐野 有司 Research Associate 高畑 直人 TAKAHATA, Naoto ### 海洋底科学部門 # 海洋底地質学分野 ### **Division of Ocean-Earth System Science**, Department of Ocean Floor Geoscience, Marine Geology Section 海洋底に分布する地層には、海洋地殻の形成、過去に生じた 地震の痕跡、地域的あるいは全地球的な環境変動、砕屑物の 集積、炭素をはじめとする物質循環などの記録が残されていま す。また、海底では火山活動、熱水活動、プレート沈み込み帯の 地殻変動などの現在進行中の地質現象を観測することができ ます。海洋底地質学分野では、主に音波を用いた地形調査や地 下構造探査、地質試料の採取、深海掘削、海底観察などによっ て、過去の現象を理解するとともに、自然災害、地球環境変動、 資源に関わる問題を解決し、将来を予測する上で基礎となる情 報の取得を目的として研究を進めています。 研究は、調査船を用いた海洋底の構造の広域マッピングとと もに、対象を絞った高精度・高解像度のデータの取得に力を入 れています。具体的には研究室で所有する3つの装置、1)海底 の微細構造や底質のマッピングを目的とした深海曳航式サイド スキャンソナー探査システム、2) 海底下浅部構造を対象とした 高解像度反射法地震探査システム、3) 精密照準採泥を目的と した自航式深海底サンプル採取システム、を用いた調査を実施し ています。例えば、プレート沈み込み帯では付加プリズムの成長 過程、砕屑物の浅海から深海への運搬・堆積過程、泥火山の形 成過程について、従来にない精度の情報を得ています。これらの 研究成果は、統合国際深海掘削計画のプロポーザルの事前調 査データとしても活用されています。 #### 現在の主な研究テーマ ●深海底接地型高解像音波探査システムの開発 堆積物に埋積された海底熱水鉱床・活断層探査のために海底設 置型の超高解像3次元構造探査機器を新しく開発しています。 ●プレート沈み込み帯浅部の地質構造、物質循環とテクトニクス の研究 付加体・前弧海盆の発達と泥火山の形成の関係を反射法地震 探査、ピンポイント採泥、海底観察、掘削によって調べています。 ●海底活断層の分布と活動履歴の研究 深海曳航式サブボトムプロファイラー探査で断層運動による 海底表層の変形構造を捉え、さらにピンポイント採泥を行うこ とにより断層の活動履歴を調べています。 - メタンハイドレートの分布と成因の研究 - ●大陸一大陸衝突に伴い形成される東地中海の塩水湖および泥 火山の研究 - ●反射法地震探査を用いた海底下構造・物性の研究 Deep-sea strata record the development of oceanic crust, the history of earthquakes, regional and global environmental changes, and the carbon cycle. Moreover, active geological processes, e.g., volcanism, hydrothermal venting, sediment transport, and crustal movements at convergent, divergent, and transform plate boundaries, can be observed on or beneath the seafloor. Our group conducts topographic, seismic reflection, sediment sampling, and seafloor observation investigations to understand both the geological record and active processes in the deep sea. In particular, we pursue high-precision and high-resolution studies using the deep-tow sidescan sonar system "WADATSUMI", a seismic reflection system consisting of a generatorinjector (GI) airgun and multichannel streamer cable, and a navigable pinpoint sampling system "NSS", as well as undertaking more regional studies. Complementary to local and regional studies, we participate intensively in the Integrated Ocean Drilling Program (IODP) and other international projects, both at sea and onshore. Our main goal is to obtain key information for reducing natural hazards, predicting global environmental changes, and locating natural resources. #### **Ongoing Research Themes** - Development of a new high-resolution ocean bottom seismic system. - Shallow structure, mass balance, and tectonics of subduction zones - Distribution and displacement histories of active submarine faults - Distribution and origin of methane hydrates - Characterization of a brine lake and mud volcanoes related to continent-continent collision in the eastern Mediterranean Sea - Structure and physical properties of oceanic crust using seismic reflection data 自航式深海底サンプル採取システム Navigable Sampling System (NSS) 教授 TOKUYAMA H ASHL J TOKUYAMA, Hidekazu 兼務准教授* 芦 寿一郎 Associate Professor ASHI, Juichiro 徳山 英一 ※大学院新領域創成科学研究科准教授 ### 海洋底科学部門 # 海洋底地球物理学分野 #### Division of Ocean-Earth System Science, Department of Ocean Floor Geoscience, Submarine Geophysics Section 深海底は水に覆われて普通は見ることのできない世界ですが、地球上の大半の火山活動が実は海底で起こっていることからもわかるように、極めて活動的なところです。海底で起こるさまざまな地学現象は、地球深部の構造やダイナミクスと密接に関連し、一方で海や大気を介して地球環境変動とも結びついています。また、海底に刻まれたさまざまな証拠から、地球の経てきた歴史の一端を垣間見ることもできます。しかしながら、深海底の調査はまだ歴史が浅く、人類が探査してきたのはごく限られた部分にすぎません。海底を研究するための手法は数多くありますが、比較的広い範囲を概観して基本的な原理や構造を把握するためには、リモートセンシングの考えを取り入れた地球物理観測と解析が強力な手段となり得ます。 本分野では、ダイナミックに変動する海底の現象と地球の構造を、主に測地学・地球物理学的な手法を用いて明らかにする研究に取り組んでいます。具体的には、研究船の観測で得られる地形・磁気・重力・地震波構造などのデータを元に、プレート境界での海底下構造や海底拡大・沈み込みのプロセス、地震発生や熱水循環に関する研究を主な課題としています。観測の対象となる海域は世界中に広がっています。また、新しい観測技術や解析手法を取り入れることも積極的に行っています。 #### 現在の主な研究テーマ #### ●中央海嶺のテクトニクスの研究 新しい海洋底が生まれる中央海嶺の海底拡大過程を研究しています。特に、マグマの供給が少なく断層運動の卓越する海嶺(海洋デタッチメント断層)に焦点をあてています。また、マグマの過剰な系としてホットスポット近傍における中央海嶺の火成活動についても調査を行っています。 #### ●熱水活動と海洋性地殻 海底熱水系とその周囲の生態系の多様性は海洋性地殻の組成と構造に支配されています。私たちは化学・生物の研究者とともに熱水の多様性を生み出すテクトニックな背景を研究しています。 #### ●巨大地震断層の3次元高精度構造と物性の解明 2007年に熊野沖南海トラフの巨大地震断層をターゲットとしたIODP南海トラフ地震発生帯掘削計画が開始されました。 海溝型巨大地震発生機構を理解するために、巨大地震断層の構造や物質特性を明らかにする必要があります。私たちは3次元反射法地震探査データを用いた高精度地殻構造イメージング処理、掘削孔を用いたVSP(鉛直地震探査)、地震探査データと掘削データとの統合解析を行っています。 The deep seafloor is an active, but hidden environment where most of Earth's volcanism and much of its tectonic activity occurs. Various phenomena on the deep seafloor are closely linked to Earth dynamics and structure, and also linked to Earth's environment through the hydrosphere and atmosphere. Though the seafloor plays an important role in Earth's evolution, the area we have investigated so far is quite limited. Geophysics is a powerful tool to investigate the vast seafloor realm and to contribute to understanding basic Earth principles and structure. We, the submarine geophysics group, study dynamic processes and the history of the deep seafloor and Earth's interior using mainly geophysical methods, including one of the academic world's most advanced seismic processing and interpretation centers. Our targets range from mid-ocean ridge processes to subduction processes, and our goal is to paint a precise picture of the cyanic earth system. #### **Ongoing Research Themes** - •Mid-ocean ridge processes: The main goal of our mid-ocean ridge studies is to understand the key processes forming the wide variety seafloor globally. A recent target is oceanic detachments where tectonism dominates magmatic accretion. We also investigate hotspot-ridge interaction as the process in magmaexcess systems. - Oceanic crust formation and hydrothermalism: We study the tectonic background and oceanic crust structure, supporting the wide variety of hydrothermal activity and eco-system. - •We use 3-D prestack depth imaging and physical properties estimation along the Nankai seismogenic fault to understand the mechanism of subduction thrust earthquakes, We reveal the detailed 3-D structure of the Nankai seismogenic fault by state-of-the-art image processing of the 3-D seismic reflection data. Moreover, we estimate the physical properties along the fault by vertical seismic profiling (VSP) and IODP core-log-seismic integration. 自航式深海探査機でとら えたマリアナ背弧海底拡 大軸の詳細地形 Microbathymetry of Mariana backarc spreading center detected by AUV OKINO, K. PARK, J. O. 准教授 Associate Professor 准教授 Associate Professor 沖野 郷子 OKINO, Kyoko 朴 進午 PARK, Jin-Oh ### 海洋底科学部門 # 海洋底テクトニクス分野 #### **Division of Ocean-Earth System Science**, Department of Ocean Floor Geoscience, Ocean Floor Geotectonics Section 本分野では、多岐にわたる海洋底火成活動の物質科学とテクト ニクスのトータルな解明を目指しています。海洋底火成活動は、(A) プレートの発散の場である海嶺域、(B) 収斂の場である島弧海溝 域 (そして両者の複合域である縁海域)、さらに両者とは (C) 独立 のプレート内域(LIPS、ホットスポット、コールドスポット、ミニスポッ
トなど)の活動に大別できます。本分野は、上記3種の活動域での 火成活動の構成物とその変遷過程の解明を目指し、基礎研究に 臨んでいます。 日本の陸上地質の70%以上は、前弧域を含む海洋底由来の物 質から構成されているといっても、過言ではありません。すなわち、 陸上の地質は過去の地質過程の集積、いわゆる現在の海洋底地 質過程の集積として理解できます。陸上地質の理解にも、海底地 質・岩石の研究は不可欠です。そのために、精密な海底地形・地球 物理調査を行い、その情報に基づいて海底地質・岩石試料(生物 硬試料を含む)を採集し、物質科学的解析により現在の海底の 構成物質、形成課程を理解し、さらには陸上地質・岩石の成因の 理解にも供しています。解析には自動化されたXRF、EPMA、ICP-MSなどの最新の装置を駆使して、岩石および構成鉱物の主成分、 微量成分から超微量成分、同位体に至る分析を行っています。特 に、海洋底試料では報告の少ない造岩鉱物の分析と、それらの基 礎分析データに基づくマグマの素過程、温度圧力などの物理化 学条件の解析に力を入れています。国際深海掘削、有人潜水艇探 査、ドレッジなどの試料が研究に供されています。 本分野では、全国共同利用研究所の特性を生かすべく、共同研 究に特別な努力を払っています。 #### 現在の主な研究テーマ #### ●海水準変動の研究 温暖化後の地球表層環境変遷や地球の平均的な気候状態 を知る上でも重要な海水準変動の研究。私たちは、国際統合 深海掘削 (IODP)やIPCC (国連気候変動に関する政府間パ ネル) などと密接に関わりながら、研究を進めています。 #### ●海底鉱物資源の研究 熱水鉱床を含め海底鉱物資源は将来の資源として期待され ています。熱水鉱床形成の仕組みを解明するため、昔の海底 であるオマーン・オフィオライトやトルードス・オフィオライトで 熱水循環系を研究しています。 #### ●古環境を復元するための間接指標の開発 将来の地球環境を予測するためには過去の環境変動を詳細 に知る必要があります。そのために私たちはサンゴなどの精密 飼育実験を通して間接指標の開発を行っています。 Volcanism on the seafloor occurs in three settings: oceanic ridges, island arcs along subduction zone (backarc basin volcanism shares characteristics with oceanic ridges), and intra-plate volcanism (large igneous provinces, hotspots, coldspots, and individual volcanoes). We investigate such volcanism globally. More than 70% of Japan's geology formed at the ocean floor in the geological past, including igneous, sedimentary, and metamorphic rocks. Research on the ocean floor is important to understand the geology of both the ocean floor and land. Our group takes rocks from the seafloor based upon detailed bathymetric and geophysical surveys, and we use these samples for precise chemical analyses. Cooperative research is important for our group. #### **Ongoing Research Themes** - •Sea level changes: Studying sea level changes are key to unveil the Earth's surface system. We are actively involving Integrated Ocean Drilling Project and Intergovernmental Panel of Climate Changes to better understand the sea level changes both in the past and future. - Study on mineral deposits on the seafloor Mineral deposits on the seafloor, including hydrothermal ore deposits, are hope to be available as a resource in future. In order to understand the mechanism of ore formation, we have been studying hydrothermal circulation system in Oman and Troodos ophiolites. #### Development of proxies to reconstruct paleo-environemnts Reconstruction of the environments in the past is important to understanding and predicting environmental changes in the near future. We are developing geochemical proxies that are essential for the environmental reconstruction through cultivation experiments using live corals. 昔の海底であるオマーン・オフィオライト Oman ophiolite, ancient seafloor 教授 KAWAHATA, H. YOKOYAMA, Y. INOUE, M. 准教授 Associate Professor Research Associate 川幡 穂高 KAWAHATA, Hodaka 横山 祐典 YOKOYAMA, Yusuke 井上 麻夕里 INOUE, Mayuri ### 海洋生命 システム研<u>究系</u> ### 海洋生態系動態部門 # 浮遊生物分野 #### **Division of Marine Life Science,** Department of Marine Ecosystems Dynamics, Marine Planktology Section プランクトン(浮遊生物)は熱帯から極域、表層から1万メートルを超える超深海まで、あらゆる海洋環境に生息しています。そこでは数ミクロンに満たない微小な藻類から数メートルを超えるクラゲの仲間まで、多種多様な生き物が相互に関係を持ちつつも独自の生活を送っています。これらプランクトンは、各々の生活を通じて基礎生産や高次食物段階へのエネルギー転送、さらには深海への物質輸送の担い手として海洋の生物生産と物質循環過程のなかで重要な役割を果たしています。また近年、地球規模での環境変動、地球温暖化や汚染物質、漁業活動等による海洋生態系の攪乱がプランクトン群集の変動と大きく関わっていることが明らかになってきました。 本分野では、海洋におけるプランクトン・マイクロネクトン(小型遊泳生物)の種多様性(多様なプランクトンはどのように進化し、どのような関係をもって暮らしているか)と物質循環における役割の解明を目指しています。この目的のため、日本沿岸、北太平洋亜寒帯域、東南アジア海域、南極海域等をフィールドとし、種の生活史と個体群動態、群集の時空間的変動、個体・種レベルでの生理・生態、種間の系統関係等について研究を進めています。また、地球規模での環境変動や汚染物質の負荷に対するプランクトン群集の応答と機能については、学際的研究航海や沿岸域での観測・実験を通じて、国際的・学際的協力のもとに研究を進めています。 #### 現在の主な研究テーマ - ●海洋生態系の種多様性と食物網 分子生物学的手法を用いて、全球レベルの多様性を把握する ことを目標としています。 - ●分子生物学的手法を用いた主要動物プランクトンの分布、生活史の解明 今まで同定できなかった卵や幼生を分子手法で同定し、全生 活史を解明します。 - ●ゼラチン質プランクトンの多様性と生態学的研究 近年世界各地で大増殖が報じられている、クラゲなどの種多 様性や生態を、多角的な手法で解明します。 - ●亜熱帯太平洋における生物生産過程と食物網構造の解明 海の砂漠、亜熱帯海域で台風が通過すると、植物プランクト ンが増加します。なぜ? - ●複合生態系としての沿岸域物質循環の研究 干潟、藻場、岩礁域など、沿岸は異なった機能の生態系が連なっています。さて、これらのつながりは? - ●津波による沿岸域生態系の損傷と2次遷移に関する研究 巨大津波により、東北沿岸の生態系は大きく損傷を受けたはずです。それを記録し、これからの変化を予測することは我々の義務だと思います。 The world ocean is dominated by various drifting organisms referred to as plankton. While each plankton species is unique in its morphology, ecology, and evolutionary history, each also has various relationships with co-occurring species and their environments, and plays major roles in biological production and biogeochemical cycles in the ocean. In recent years, it has become increasingly apparent that global-scale environmental changes and disruptions to marine ecosystems by human activities are closely linked to changes in plankton communities. Our laboratory focuses on investigating marine plankton and micronekton to understand their biology, ecology, and roles in biogeochemical cycles in the ocean. #### **Ongoing Research Themes** - Species diversity and the food web structures in the oceanic ecosystems: Molecular techniques reveal the basin-scale patterns of biodiversity. - Life history of zooplankton: Molecular techniques together with field observation reveal egg to adult life histories of important species of zooplankton. - Biodiversity and ecological roles of gelatinous plankton: Elucidating species diversity and ecologies of gelatinous plankton through field sampling, submersible observations, and laboratory experiments. - Mechanisms of new production and trophodynamics in the subtropical Pacific: Passing a typhoon causes a enhancement of primary production and alter the food-web structures in the ocean desert. - Understanding of coastal ecosystems from a multiecosystems perspectives: Mudflat, sea glass bed, sea weed forest are the major components of coastal ecosystem. We try to elucidate the interactions among them. - Damages by the great tsunami and the secondary succession of coastal ecosystems in Tohoku area: We have just started the investigation on the damages of coastal ecosystems by the great tsunami from the view point of planktonic organisms. 研究船白鳳丸でのプランクトン採集 Plankton sampling on the R/V Hakuho Maru TSUDA, A. NISHIKAWA, J. 教授 津田 敦 Professor TSUDA, Atsushi 助教 西川 淳 Research Associate NISHIKAWA, Jun ### 海洋生態系動態部門 ## 微生物分野 #### **Division of Marine Life Science**, ### Department of Marine Ecosystems Dynamics, Marine Microbiology Section 海洋生態系はさまざまな種類の生物から構成されています。そ のなかで、細菌は原核生物という生物群に属し、この地球上に最 も古くから生息してきた一群です。海洋の大部分は高塩分、低栄 養、低温、高圧で特徴づけられますが、海洋細菌はこれらの環境 に適応した生理的特性を持つことによってあらゆる海域に分布す るとともに、細菌同士あるいは高等動植物とさまざまな相互作用 を行い、海洋生物圏の多様性創出の担い手となっています。 また、細菌は分解者として、さまざまな有機物を最終的に水と 二酸化炭素に変換します。懸濁態の有機物は細菌以外の動物も 餌として使うことができますが、溶存態の有機物を利用できるの は細菌だけです。海洋の溶存態有機物は地球上の炭素のリザー バーとしても極めて大きいので、細菌の機能を理解することは、地 球全体の炭素循環の解明にとって重要です。 本分野では、多様な海洋細菌の生物的特性と生態系における 機能を、分子生物学的手法、最新の光学的手法、斬新な方法論 を導入することによって解析していくことを目指しています。 #### 現在の主な研究テーマ #### ●海洋細菌の現存量、群集構造、メタゲノム解析 次世代シークエンサーを含めた最新の解析ツールを用いて、海洋 構造や場に応じた群集構造の特徴やその変動機構の解明、特 定機能グループや機能遺伝子の分布と定量に関する研究を行っ ています。 #### ●高機能群集の統合的解析 海洋細菌群集は生息する海域や場に応じて特定の機能グループ が高い活性を持ち、物質循環に大きな役割を果たしています。それ らの群集を特異的に検出する手法を活用し、環境データと統合し ながらその貢献を定量的に明らかにしています。また、窒素代謝、 光利用などの特定機能を持った群集を対象にして培養法を併用 しながら解析を行っています。 #### ●海洋細菌と微小粒子との相互作用 海洋には細菌数を2桁程度上回る微小な粒子が存在し、それらが ダイナミックに生成、分解されていると予想されています。海洋細菌 がそれらのプロセスにどのように関わっているか、そうしたプロセス が海洋の物質循環にどのようなインパクトを与えているかについて 解析しています。 #### ●海洋性光従属栄養細菌の生理、生態 近年の研究から、海洋にはプロテオロドプシン、バクテリオクロロ フィルなどの光利用様式を持った細菌が多量に存在することが分 かってきました。最新の遺伝子解析、培養法、光学的手法、生理 的アプローチなどを用いてそれらの機能特性と生態的役割につい て研究をしています。また特定株の全ゲノム解析を行っています。 Marine ecosystems consist of diverse groups of living organisms. Bacteria or prokaryotes appeared on Earth first. Most of the ocean is characterized by high salinities, low nutrients, low temperatures, and high pressures. Through Earth history, marine bacteria have evolved to adapt to such physicochemical factors, and have become distributed throughout the ocean. In addition, bacteria have developed various interactions with both other bacteria and higher organisms. These interactions have also contributed to species enrichment on Earth. Bacteria, known as degraders, convert organic matter into water and carbon dioxide. Although particulate organic matter can be consumed by animals, Dissolved Organic Matter (DOM) is utilized solely by bacteria. As DOM is one of the largest global reservoirs of organic materials, clarification of bacterial functions is of primary importance in understanding the mechanisms of the global carbon cycle. The Microbiology Group seeks to clarify the biological characteristics, functions, and ecological contributions of marine bacteria by introducing new approaches in combination with molecular techniques and newly developed optical devices. #### **Ongoing Research Themes** - Biomass, community structure and metagenomic analyses of marine prokaryotes - Integrated research on prokaryotic group with high activity and functions - Interaction between marine submicron particles and microorganisms - Ecology and physiology of photoheterotorphic microorganisms An Atomic Force Microscopy (AFM) image of a marine bacterium KOGURE, K. HAMASAKI, K. NISHIMURA M 教授 准教授 Associate Professor 助教 濵﨑 恒二 HAMASAKI, Koji 西村 昌彦 Research Associate NISHIMURA, Masahiko 木暮 一啓 KOGURE, Kazuhiro ### 海洋生態系動態部門 # 底生生物分野 #### **Division of Marine Life Science,** Department of Marine Ecosystems Dynamics, Benthos Section 深海底にさまざまな距離をおいて分布する熱水噴出域や湧水域などの還元的な環境で観察される化学合成生物群集は、還元環境に高度に適応した固有の動物群から構成されており、深海生物の進化を研究する上で、絶好の対象です。私達は様々な動物群の起源や進化、集団構造などを遺伝子の塩基配列に基づいて解析しています。またその分散機構を理解するために、熱水域固有種のプランクトン幼生の飼育や細菌との共生様式の研究もおこなっています。 日本海は、狭く浅い海峡によって周囲の海域から隔てられた半 閉鎖的な縁海です。最終氷期の最盛期には、海水準の低下と大 陸からの多量の淡水流入により無酸素状態になり、多くの海洋生 物が死に絶えたとされていました。一方、おなじ縁海でも、オホーツ ク海には氷期にも、生物にとって比較的良好な環境が維持されて いたと考えられています。私達はこうした環境変動が深海生物の 遺伝的な集団構造にどのようなパターンを形成してきたかについ て、底魚類を対象に解析しています。こうした研究は海洋生物集団 の形成史を明らかにするのみでなく、将来の地球環境変動が海洋 生態系に及ぼす影響の予測にも役立つと期待しています。 沿岸環境浄化の場であり、高い生物多様性を持つ日本の干潟は、近年の埋め立てや海洋汚染で大きく衰退してしまいました。私達は干潟生態系の生物多様性を保全するための基礎データ収集を目的に、干潟の代表的な動物群である巻貝類を対象として、全国の干潟で分布調査と集団の遺伝学的特性の解析をおこなっています。また、温暖化の影響が集団構造に及ぼす影響や底生生物が環境浄化に果たす役割を研究しています。 #### 現在の主な研究テーマ - ●熱水域固有の蔓脚類の幼生生態 - ●熱水域・湧水域を含む深海性巻貝の進化と生態 - ●深海性底魚類の遺伝的・形態的分化 - ●干潟に生息する巻貝類の集団構造 -
●干潟における底生生物の環境浄化作用 - ●両側回遊性貝類の自然史 In deep-sea reducing environments, such as hydrothermal vent fields and cold water seep areas, faunal communities with extraordinary large biomass are often observed. They depend on primary production by chemoautosyntheic bacteria. As most components of the chemoautosynthesis-based communities are endemic and highly adapted to such environments, they are suitable subjects for the study of evolution in the deep-sea. We are studying origins, evolution processes and population structures of various groups based on nucleotide sequences of mitochondrial and nuclear genes. In order to understand dispersal mechanisms of endemic species, we are rearing planktonic larvae and analyzing symbiosis with bacteria. The Japan Sea is a semi-enclosed sea area isolated from neighboring seas by relatively shallow and narrow straits. Severely anoxic conditions have been proposed for the Japan Sea during the last glacial maximum. In contrast, no anoxic or suboxic conditions has been suggested to have existed in the Okhotsk Sea even during the last glacial maximum. In order to reveal the effect of such environmental changes on marine ecosystems, we are comparing population structure of deep-sea demersal fishes between these sea areas. Obtained results will provide information about the formation process of Japanese marine fauna as well as fundamental data for estimations of the effects of future environmental changes on marine ecosystems. In Japan, tidelands have been severely damaged by reclamation and pollution during the resent explosive development of coastal areas. We are analyzing geographical distribution and population structures of tideland snails in order to obtain fundamental information for conservation of biodiversity of tideland ecosystems. We are also analyzing the effects of global warming on such geographical patterns. #### **Ongoing Research Themes** - Larval ecology of hydrothermal-ventendemic barnacles - Evolution and ecology of deep-sea gastropods, including hydrothermal vent endemics - ●Genetic and morphological deviation of deep-sea demersal fishes - Effects of global warming on population structure of tideland snails - ●Role of tideland benthos on purification of coastal environments - Natural history of amphidromous snails 研究船淡青丸でのトロール作業 Sampling of deep-sea benthic animals using a trawl on the R/V Tansei Maru ける深海性疾病温の分散と分化 CYTRINGS KOJIMA, S. KANO, Y. 兼務教授^{*} 小島 茂明 Professor KOJIMA, Shigeaki 准教授 狩野 泰則 Associate Professor KANO, Yasunori ※大学院新領域創成科学研究科教授 ### 海洋生命科学部門 # 生理学分野 **Division of Marine Life Science,** Department of Marine Bioscience, Physiology Section 太古の海に誕生した生命は、地球の歴史とともに進化を遂げ てきました。生理学分野では、生物と海との関わり合いのなかか ら、生物がどのようにして海洋という場に適応し生命を維持してい るかについて、生理学的な立場から研究を進めています。海は安 定な環境ですが、海水の浸透圧は非常に高く(我々の体液の約3 倍)、海洋生物はさまざまな戦略をとりながら海という高い浸透圧 環境に適応しています。その仕組みは図に示した3つのパターン に大別できます。私たちは、それぞれの仕組みを解明することによ り、生物の進化という壮大な歴史において、海洋生物がどのように それぞれの適応戦略を獲得し、現在の繁栄をもたらしたのかに注 日しています。 生物の生理を知ることは、まずその生物を観察することからはじ まります。そこで、ウナギ・サケ・メダカ・イトヨ・サメ・エイなど、多種 類の魚を飼育して研究を行っています。血管へのカニュレーション などさまざまな外科的手術によって、浸透圧調節器官の機能や各 種ホルモンの働きを個体レベルで調べています。より詳細なメカ ニズムの解析では、水・イオン・尿素などの輸送体や、ホルモンと その受容体を分子生物学的に同定し、組織学的あるいは生理学 的解析法を駆使して輸送分子の働きやホルモンによる調節を調 べています。ゲノム情報に基づくバイオインフォマティクスを利用し た新しいホルモンの探索や、トランスジェニックおよびノックダウン 魚の作成のような遺伝子工学的な手法もとり入れ、遺伝子から個 体にいたる広い視野と技術を用いて、海洋生物の適応戦略を解 明しようと研究を進めています。 #### 現在の主な研究テーマ - ●海という高い浸透圧環境への適応の仕組みを、遺伝子から 個体にいたる多様な手法を用いて明らかにしています。 - ●回遊魚などに見られる広い塩分耐性(広塩性)の仕組みを、 狭塩性魚と比較することにより解明しています。 - ●体液調節ホルモンとその受容体の分子と機能の進化につい。 て、さまざまな系統解析法を用いて明らかにしています。 - ●体液調節に関わるさまざまなホルモンの分泌や作用を統合的 に眺め、海水適応における内分泌調節を理解しています。 - ●バイオインフォマティクスを利用して、魚類や哺乳類から新規 体液調節遺伝子を発見します。 - ●遺伝子工学を利用して体液調節遺伝子の導入や破壊を行い、 その機能を個体レベルで解明しています。 - ●バイオロギングサイエンスに生理学的要素を導入するため、浸 透圧や水圧をトリガーとする採血装置を開発して海洋生物に 装着し、新しい研究分野の開拓を試みています。 Life originated in the ancient seas, and has acquired diverse functions during the long history of evolution. The Laboratory of Physiology attempts to clarify, from a physiological perspective, how organisms have adapted to different marine environments. To cope with the lifethreatening, high salinity of seawater, marine organisms adopt three different strategies, as depicted in the figure. Teleosts (e.g., eels, and salmon) maintain their plasma osmolality at about one third of seawater. while elasmobranchs (sharks and rays) elevate their plasma osmolality to seawater levels by accumulating urea. Our studies focus on how animals have acquired different osmoregulatory mechanisms during the long evolutionary history of the sea by comparing mechanisms in extant vertebrate and invertebrate species. To this end, we investigate mechanisms of each osmoregulatory system utilizing a wide variety of physiological techniques at gene to organismal levels. #### **Ongoing Research Themes** - Analysis of diverse strategies for adaptation to high-salinity marine environments using various techniques. - Analysis of osmoregulatory mechanisms in euryhaline fish. - Analysis of molecular and functional evolution of osmoregulatory hormones and their receptors by phylogenetic and genetic techniques. - ■Integrative approach to endocrine control of osmoregulation. - Discovery of novel osmoregulatory genes/proteins in fish and mammals using bioinformatic techniques. - Application of genetic engineering techniques to evaluate the role of an osmoregulatory gene at the organismal level. - ●New data logger was developed to introduce physiological discipline into the bio-logging science. 海という高浸透圧環境に適応するための3つの戦略 Strategies for adaptation to hyperosmotic marine environment Complete conformer 完全順応型 Ionic and osmotic conformer Hagfish and invertebrates 円口類・無脊椎動物 Partial regulator 部分調節型 Ionic regulator, but osmotic conformer Sharks, rays and coelacanth 板鰓類・肉鰭類 Complete regulator 完全調節型 Ionic and osmotic regulator Teleosts, reptiles, birds and mammals 条鳍類・四足類 TAKEI. Y. HYODO S KUSAKABE, M. 教授 准教授 Associate Professor 助教 Research Associate 竹井 祥郎 TAKEI, Yoshio 兵藤 晋 HYODO, Susumu 日下部 誠 KUSAKABE, Makoto ### 海洋生命科学部門 # 分子海洋生物学分野 #### **Division of Marine Life Science,** ### Department of Marine Bioscience, Molecular Marine Biology Section 生命の誕生以来、生物進化の舞台となってきた海洋では、現在でも 多様な生物が、実に多彩な生命活動を営んでいます。分子海洋生物学 分野では、分子生物学的な研究手法を活用して、そうした多様な生物 の歴史を探るとともに、海洋における重要で興味深い生命現象のメカ ニズムとその進化を、遺伝子の言葉で理解することを目指しています。 生物の歴史の研究では、魚類や甲殻類などを対象に、ミトコン ドリアゲノムの全長分析を基礎にした大規模系統解析によって、 信頼性の高い系統枠の確立を進めています。さらにそれに基づい て、種分化との関わりが予想される形質や、あるいはゲノムそのも のの進化を、分子のレベルから解明することに挑戦しています。 生命現象の研究では、海産無脊椎動物と藻類や化学合成細 菌との共生、極限環境や環境変動に対する生物の適応などの複 雑な生物現象のメカニズムとその進化を、飼育実験や、フィールド 調査を併用しながら解明しようとしています。 これらの研究を通じて、水圏の生態系・生物多様性の進化的成 り立ちをより深く理解すること、すなわち、多様な生きものが織り なす地球の豊かな自然が、どのように形成されてきたのかを解き明 かしたいと考えています。 #### 現在の主な研究テーマ - ●水圏生物種における集団構造の分子集団遺伝学的・系統地理学的研究 - ●種分化および近縁種の多様化過程の系統的分析およびその基 礎にある遺伝子変異の探求 - ●DNA分析による魚類・頭索類などの包括的高次系統解析 - ●魚類のミトコンドリアゲノムおよび核ゲノムの進化 - ●海産無脊椎動物と褐虫藻の共生関係 - ●深海環境(とくに熱水噴出域)への生物の適応機構とその進化 - ●海産無脊椎動物 (とくに付着性生物やナンキョクオキアミ) の環 境適応機構とその進化 - ●メダカ近縁種を用いる環境適応機構と環境モニタリングの研究 After the origin of life, a variety of organisms have evolved in the sea. The Laboratory of Molecular Marine Biology conducts research to understand the molecular basis of the history of diversification of aquatic organisms and the various functions involved in species diversification and acquisition of habitats. The evolutionary history of diverse aquatic organisms is elucidated mainly by population genetics and phylogenetics with modern molecular techniques. Especially, we have been determining reliable phylogenetic frameworks, indispensable for evolutionary comparisons, in fish and lancelets through whole mitochondrial genome sequencing. On the basis of such frameworks, we seek to understand the evolution of biologically interesting characteristics, such as those responsible for speciation, from both genetic and genomic perspectives. Research on biological functions is focused on symbiotic associations between marine invertebrates and microorganisms such as algae (zooxanthellae) and chemoautotrophic bacteria, and adaptation mechanisms to extreme environments such as hydrothermal vents and changes in environmental conditions. Rearing experiments in laboratory and field research are employed in addition to detailed molecular analyses. Through the studies of phylogenetic and functional evolution described above, we hope to gain a better understanding of how life on earth with its diverse and rich ecosystems has evolved. #### **Ongoing Research Themes** - Molecular population genetics and phylogeography of aquatic organisms - Phylogenetic analysis of speciation and evolutionary processes in closely related species - Comprehensive phylogenetic analysis of fish, lancelets, and crustaceans through DNA sequencing - Evolution of mitochondrial and nuclear genomes in fish - Symbiotic associations between marine invertebrates and zooxanthellae - Mechanisms of adaptation to the deep-sea, including hydrothermal vents, and its evolution - Mechanisms of environmental adaptation of marine invertebrates including barnacles, mussels, and Antarctic krill - Studies on mechanisms of environmental adaptation of Asian medaka fishes and its application to environmental monitoring 魚類の系統的成り立ちには不明な点が多かった。そこで本分野では世界に先駆けて大規模DNA解析によって、その系統進化の解明を進めてきた。この図は、我々の一連の条鰭類の研究結果を整理し たもの。このような知見があってこそ、種々の進化現象の解析が可能となる。例えば、脊椎動物では全 ゲノム規模での遺伝情報の倍化が数回起こったと考えられている。その3度目が進化史上のどこで起 こったかは判然としていなかったが、系統関係が明瞭になったおかげで、図中の「3R」で示したところ で生じたらしいことが明らかになってきた Phylogenetic relatioships of actinopterigian fishes derived from a series of our intensive and extensive molecular phylogenetic studies. 3R denotes probable position of the 3rd round of genome duplication INOUE, K. MARUCHI K 教授 西田 睦 NISHIDA, Mutsumi 准教授 井上 広滋 Associate Professor INOUE, Koji 助教 馬渕 浩司 Research Associate MABUCHI, Koji ## 海洋生命科学部門 ## 行動生態計測分野 #### **Division of Marine Life Science,** ### Department of Marine Bioscience, Behavior, Ecology and Observation Systems Section 本分野では、魚類、ウミガメ類、藻類など、広く海洋生物の行動 と生態について研究しています。これらの生活史、分布特性、産卵 生態、回遊行動、さらにはその進化過程を、フィールド調査、分子 遺伝学的手法、行動実験、リモートセンシング技術など、さまざま な手法を駆使して解明に努めています。
1.海洋生物の回遊生態:生き物はなぜ旅をするのか? この究極の 問いに答えを得るため、ウナギ、アユ、サクラマス、ボウズハゼなど の回遊魚とウミガメ類を対象にして、それぞれの回遊生態を研究し ています。これらの研究成果を統合し、生物界に広く見られる回遊 現象の根底に潜む共通原理を明らかにします。 一方でDNA解析から得た分子系統樹をもとに、回遊現象の起 源と進化の過程を解き明かしつつあります。例えばウナギは、数 千万年前に現在のインドネシア・ボルネオ島付近の海水魚から派 生し、海と河川の間で回遊を拡大しつつ種分化を繰り返し、世界 中に広がっていったらしいとわかってきました。 2.沿岸生態系: 沿岸環境の健全な維持と持続的な海洋生物資源 の利用のためには、藻場や干潟など環境を形成する生態系の理 解が必要です。特に研究が遅れている藻場生態系と流れ藻生態 系に着目し、生物と海洋環境の相互作用の観点から総合的な研 究を行っています。 3. 海洋生物の分布・環境計測:海洋生物の保全を行う場合、まず 必要になるのが生物の分布や行動の情報です。マルチビームソ ナーなどの音響資源計測、衛星リモートセンシング技術とGIS(地 理情報システム)を組み合わせた分布・環境計測法の開発、統合 的な沿岸環境の保全手法の研究、魚類の遊泳行動の計測に取 り組んでいます。 #### 現在の主な研究テーマ - ●ウナギの産卵場と繁殖生態に関する研究 - ●魚類の回遊生態と初期生活史に関する研究 - ●回遊の起源と進化に関する分子系統学的研究 - ●ウミガメの回遊生態と集団構造に関する研究 - ●レプトセファルス幼生の生物多様性に関する研究 - ●バイオロギングによる魚の遊泳行動の計測 - ●流れ藻の分布・移動・生態に関する研究 - ●リモートセンシングによる藻場分布計測手法の開発 - ●魚群探知機を用いた海底・魚類判別システムの開発 - ●マルチビームソナーを用いた魚群分布計測法の開発 We investigate the life history, distribution, reproductive ecology, migratory behavior and evolution of marine organisms such as fish, sea turtles, and seaweed/seagrass through field surveys, behavioral experiments, molecular genetics, and remote sensing. 1.Migratory behavior of marine organisms: "Why do animals migrate?" This ultimate question is addressed by studying the migratory behavior of freshwater eels, avu, salmon, gobies, and sea turtles, and by synthesizing this knowledge into the fundamental principles of migration. The origin and evolutionary processes of migration are also studied, together with molecular phylogenetic analyses of migratory animals. 2.Studies on coastal ecosystems: To help maintain healthy marine environment and exploit biological resources in a sustainable way, we study the ecological role of seaweed/seagrass meadows as well as drifting seaweeds. 3. Habitat mapping and measurement of marine organisms: For conservation of coastal ecosystem, we study a habitat mapping system coupling both GIS and remote sensing techniques such as satellite and multibeam sonar. It is also necessary to understand their behaviors for sustainable use of fish resources. Measurements of fish behavior are tackled with using a new method, bio-logging system. #### **Ongoing Research Themes** - Survey of the spawning area of the Japanese eel and its reproductive ecology - Ecology of fish migration and early life history - Biodiversity and ecology of leptocephali - Molecular phylogenetic studies of the origin and evolution of diadromous migration in fishes - Migration and population structure of sea turtles - Measurement of swimming behavior of fish species through biologging experiments - Distribution, transport and ecology of drifting seaweed - Detection techniques for submerged aquatic vegetation using remote sensing - Detection systems for bottom features, fish species, and fish schools using echo-sounder and multi-beam sonar 魚類における 通し回遊現象の 起源と進化 Origin and evolution of diadromous migration in サケは淡水に起源し、海にその回遊環を広げていったが、ウナギは逆に、海に起 源し、淡水に侵入していった。赤い回遊環は祖先的な残留型の存在を示す Eels originated in the sea and expanded their migration loops into freshwater habitat, while salmon originated in freshwater and invaded the sea. Red migration loops show ancestral types of migration of resident groups TSUKAMOTO, K. KOMATSU, T. INAGAKI, T. ISHIDA K 教授 Associate Professor 助教 Research Associate 助教 Research Associate 塚本 勝巳 TSUKAMOTO, Katsumi 小松 輝久 KOMATSU, Teruhisa 稲垣 正 INAGAKI, Tadashi 石田 健一 ISHIDA, Ken-ichi ### 海洋生物資源部門 # 環境動態分野 #### **Division of Marine Life Science**, Department of Living Marine Resources, Fisheries Environmental Oceanography Section 海洋は、魚・貝類や海藻など多くの恵みを育み、人類の生活を支えています。最近の研究では、これらの海洋生物資源は、海洋環境の変動と強く結びついていることが明らかになりつつあります。例えば、日本で漁獲されるマイワシは最盛期の500万トンから近年の1万トンの水準まで漁獲量が大きく変動していますが、その変動は、マイワシの卵や仔稚魚の輸送経路である黒潮・黒潮続流域の海洋環境の変動と強く関係していることが当分野の研究から明らかになりました。海洋環境は、水温、塩分、酸素、栄養塩類や各種有機物と、それらの分布・輸送に関わる海流・乱流混合過程で規定されますが、海洋環境と海洋生物との関係は様々な要因が複雑に絡み合っており、いまだ多くの謎に包まれています。 さらに、マイワシのように主要な水産資源は、海洋や気候に見られる数年から数10年規模の変動に伴って大きく変動することが知られており、海洋や気候の長期変動がなぜ生じるかを明らかにすることが、海洋生物資源の変動を予測する上で極めて重要な課題となっています。海洋や気候の数10年規模の長期変動の原因について、当分野では、「潮汐18.6年周期振動と海洋鉛直混合を通じた海洋・気候の長期変動仮説」を世界に先駆けて提案し、北太平洋亜寒帯海域の水塊や栄養塩、プランクトンの変動に潮汐18.6年振動との強い関係性を見出したほか、海洋の混合過程が気候や海洋生態系の変動に与える影響について、新しい研究成果を次々と発信しています。 当分野では、国内外の船舶を利用して現場観測を行い、また高解像度数値シミュレーションや人工衛星データ解析など様々な手法を用いて、海洋生物資源の変動メカニズムの解明に向けた研究を進めています。観測研究では、黒潮や親潮の流れる日本近海、オホーツク海、ベーリング海等において、深海まで観測可能な乱流観測装置、乱流計を搭載した海洋グライダ、生物センサを搭載した多機能型フロート、多層ネットなど、最先端の機器を使用して新しい知見を得ています。また、数値モデル研究では、データ同化を利用した高解像度生態系モデルの開発、大気海洋結合モデルを用いた気候や生態系の変動予測実験を実施して、海洋生物資源の変動要因の解明と予測技術の開発に向けた研究を展開しています。 #### 現在の主な研究テーマ - ●マイワシ等海洋生物資源の変動機構・魚種交代現象の解明 - ●北太平洋表中層循環と気候・生態系への影響解明 - ●地球温暖化が海洋生物資源の変動に与える影響の解明 - ●黒潮・親潮の変動機構と低次生態系・魚類資源変動との関係解明 - ●鉛直混合が生物地球化学過程に与える影響の解明 - ●エチゼンクラゲ等の有害生物や有害物質の輸送予測モデルの開発 - ●新世代海洋観測機器・数値モデルの開発 Physical environment plays the most fundamental role of physiology and ecology of marine fishes. Temperature and salinity have critical impacts on physiology. Flow fields determine transport and diffusion of eggs and larvae, and even growth of planktons and fish migration has close relationship with the physical environment. Life history strategies of the fishes often select different areas among coastal and offshore, subtropical and subarctic, and specific oceanic phenomena such as eddies, waves, and fronts, to obtain their appropriate physical environments for survival. It is strongly required to understand these complex physical-biological interactions as well as physical oceanographic processes in order to make clear the dynamics of fluctuation of fisheries resources. Our group studies the dynamics of physical oceanographic processes and physical-biology interactions by field observations, laboratory experiments, and numerical simulations. #### **Ongoing Research Themes** - Observation and theory of North Pacific surface-intermediate water-mass formation and circulation, and their impact on climate and marine ecosystem - ●18.6-year period nodal tidal cycle hypothesis linking oceanic mixing, circulation and long-term ecosystem variability - Impact of Global warming on living marine resources in the North Pacific - Mechanism of Kuroshio-Oyashio large-meso scale variability and its impact on lower-trophic level ecosystem and species replacement of small pelagic fishes as sardine, saury and jack macherel. - Transport and migration process of giant jellyfish which cause damages to fisheries around Japan in these years - Oceanographic observations using mooring and deep microstructure profiler down to 2000m etc, marine-system studies using numerical modeling of physical oceanography, ecosystem and data assimilation. ロシア船における乱流計回収作業風景 Recovery of turbulent microstructure profiler on deck of Russian vessel YASUDA, I. KOMATSU, K. 教授 安田 一郎 Professor YASUDA, Ichiro 兼務准教授^{*} 小松 幸生 Associate Professor KOMATSU, Kosei ※大学院新領域創成科学研究科准教授 ### 海洋生物資源部門 ## 資源解析分野 #### **Division of Marine Life Science**, ### Department of Living Marine Resources, Fish Population Dynamics Section 水産資源は古くから人類の食料源として重要な役割を担ってき ました。世界の動物性タンパク質供給の15%以上、我が国では約 40%を魚介類が占めています。世界の漁業生産量は2006年以 降9000万トン前後を維持しています。水産資源は自然の生態系 の一部であり、自律的に増殖する性質があります。したがって、自 然の生産力を維持しておけば資源を持続的に利用できる反面、 資源が乱獲状態に陥ると直ちに回復するとは限りません。FAOに よれば、世界の53%の資源は生産力の限界まで漁獲されており、 32%の資源はすでに乱獲状態にあるとされています。世界の漁業 生産は限界に近い状態にあり、生物資源の持続性には充分な注 意を払う必要があります。 本分野では、限りある海洋生物資源を合理的かつ持続的に利 用するための資源管理・資源評価の研究を主に行っています。海 の生態系に対する我々の知識は断片的であり、魚の個体数の推 定値や将来予測は大きな誤差を含みがちです。情報が正確である ことを前提にした管理は資源を絶滅させる恐れすらあります。我々 は、不確実性に頑健な管理方法の研究に取り組んでいます。スナ メリやミナミハンドウイルカなど希少生物の保全に関する生態学 的研究、管理や保全に必要な個体群パラメータ推定に関する統 計学的手法の研究も行っています。これら研究のための主な手法 は、個体数や生態系の変動を仮想的に再現するコンピュータシ ミュレーション、調査データの数理統計解析、現場調査、室内実 験など多岐にわたります。 #### 現在の主な研究テーマ #### ●海洋生物資源の順応的管理に関する理論的研究 順応的管理とは、生態系の変動に人間の側が事後的に対応 する方策です。不確実性に頑健な順応的管理は、野生生物管 理の現場で注目されています。 #### ●資源評価のための統計学的手法の開発 漁業統計や試験操業データなどの断片的でかつ誤差の含ま れたデータから、個体数や生態学的パラメータを推定するた めの統計学的な手法を開発しています。 #### ●沿岸性鯨類の保全生態学的研究 人間活動の影響を直接に受ける沿岸海域に生息しているスナ メリやミナミハンドウイルカの個体群動態と保全に関する研 究に取り組んでいます。 > 海の幸を持続的に利用するためには 生物の生産性を損なわないこ とが重要。我々は、統計解析・数理モデルの解析・数値シミュレーショ ンなどの数理的な手法を用いて、生物資源の管理方式を開発している In order to develop management procedure for marine living sources, we have been developing numerical methods such as statistical analysis, construction of numerical model, and computer simulation Fisheries play an important role in the global food supply. Fisheries production provides more than 15% of total animal protein supplies in the world, and about 40% in Japan. World fisheries production seems to have reached maximum sustainable limits. About 53% of the marine stocks or species groups are fully exploited, and another 32% of stocks or species groups are overexploited or depleted (FAO SOFIA2010). Catches and biomass will decline unless concerted management efforts are taken to prevent overfishing. The general research themes of the Division of Fish Population Dynamics are fisheries management and stock assessment for sustainable and efficient use of living marine resources. Other active research topics include conservation ecology of coastal cetaceans and biostatistics for estimating population parameters. Research is conducted by computer simulation of numerical models, statistical analyses of data, field research, and laboratory experiments. #### **Ongoing Research Themes** - ●Adaptive management of marine living resources : Our knowledge of ecosystems is extremely limited. We need to learn about ecosystems through monitoring and management of natural resources. - Development of statistical techniques for stock assessment : Field data are commonly scarce and uncertain. Proper statistical techniques for data analysis are invaluable for estimating biological parameters from limited data. - ■Conservation ecology of coastal cetaceans : Finless porpoise and Indo-Pacific bottlenose dolphin, which inhabit coastal waters, are affected by human impact. Our investigations encompass population dynamics and conservation of these two species. HIRAMATSU, K. Associate Professor 兼務教授* 白木原 國雄 SHIRAKIHARA, Kunio 平松 一彦 HIRAMATSU, Kazuhiko ※大学院新領域創成科学研究科教授 ## 海洋生物資源部門 ## 資源生態分野 #### **Division of Marine Life Science,** ### Department
of Living Marine Resources, Biology of Fisheries Resources Section 海洋動物は陸上動物と比べると一般に極めて多産です。産卵 数や産卵期は年々の海洋環境の変化に伴って変わり、卵の大き さや栄養蓄積量も変化します。また、海洋動物の幼体は成体とは 全く違う形態を持つものが多く、その生態も成体とは異なっていま す。例えば、マイワシやカツオの仔魚は泳ぐ力が弱く、外敵に対し ても無力ですが、成魚は大きな群れを作って活発に遊泳します。ア ワビやウニなど底生無脊椎動物の幼生の多くは、生後しばらくは 浮遊し、「変態」という劇的な形態の変化を経て底生生活に移行 します。生まれた子の多くは卵から幼生期にかけての生活史初期 に死亡し、その時期を乗り越えて生き残る個体はごくわずかです。 したがって、毎年新たに加入する若齢群の資源量は、卵の量や幼 生期の大量死亡の程度によって決まり、年によって大きく変動しま す。しかし、変動の仕方は種によってさまざまであり、それはそれぞ れの繁殖生態や初期生態の特徴と密接な関わりがあると考えら れます。例えば、同じニシン科の魚でも、亜寒帯から温帯水域に分 布するニシンやマイワシでは、年々の新規加入量が2~3桁の幅 で大変動しますが、亜熱帯から熱帯を分布の中心とするウルメイ ワシやキビナゴでは、新規加入量の年変動幅が1桁以内と安定し ています。 本分野では、海洋動物のうち主に資源として利用される動物の 繁殖生理・生態と初期生態を、フィールドにおける調査や飼育実 験、そのほかさまざまな手法を用いて研究しています。それによって 加入量変動の生物学的基礎を明らかにして、生物学的特性に裏 付けられた最適な資源管理手法の確立に資することを目的として います。 #### 現在の主な研究テーマ - ●魚類の加入量変動に関する生態学的研究 - ●貝類の再生産戦略と加入量変動機構の解明 - ●海産動物の生活史、繁殖生理・生態、初期生態に関する研究 - ●主な対象種と研究海域 ニシン (宮古湾、北海道沿岸)、マイワシ・ウルメイワシ (相模湾、三陸沖)、キビナゴ (和歌山県串本周辺、五島列島)、カタクチイワシ (相模湾、三陸沖)、サンマ (北西太平洋)、マアジ (若狭湾、東シナ海)、サワラ (香川県屋島)、カツオ (西部太平洋)、シラウオ・ワカサギ (茨城県涸沼)、シシャモ (北海道)、アオメエソ (福島県沖)、チョウチンアンコウ・ハダカイワシ科魚類 (北西太平洋)、エゾアワビ (三陸沿岸)、クロアワビ・マダカアワビ・メガイアワビ・トコブシ・サザエ (相模湾)・アサリ (東京湾) など。詳細は http://otolith.aori.u-tokyo.ac.jp/を参照ください。 Marine animals generally produce copious eggs, most of which perish during early stages of life histories. Recruitment of marine populations fluctuates considerably year to year. However, fluctuation patterns differ among species, which may be closely related to differences in reproductive and early life ecologies. For example, interannual variability in recruitment can vary by two to three orders of magnitude in subarctic Clupea pallasii and temperate Sardinops melanostictus, in contrast to subtropical Etrumeus teres and tropical Spratelloides gracilis, for which variability stays within one order of magnitude. We investigate physiological and ecological characteristics of adult sexual maturation, and growth and mortality in early life stages of living marine resources, by field studies and laboratory experiments. The aim of our research is to elucidate the biological traits of marine resources underlying the mechanisms of recruitment fluctuations. Our results will form the basis for management and conservation of fisheries resources. #### **Ongoing Research Themes** - Recruitment dynamics of marine fish populations - Strategies of reproduction and mechanisms of recruitment fluctuations of shellfish species - Life history, physiological and ecological characteristics of reproduction and early life stages of marine animals マイワシの群泳 School of Japanese sardine Sardinops melanostictus 無節サンゴモ上を歩くトコブシ Small abalone *Haliotis diversicolor* trailing on the crustose coralline algae WATANABE, Y. KAWAMURA, T. SARUWATARI, T. 教授 Professor 准教授 Associate Professor 助教 助教 Research Associate 渡邊 良朗 WATANABE, Yoshiro 河村 知彦 KAWAMURA, Tomohiko 猿渡 敏郎 SARUWATARI, Toshiro #### 研究連携領域 # 生物海洋学分野 ### Department of Collaborative Research, **Biological Oceanography Section** 海洋生物の分布・回遊および資源量は、海洋環境の物理・生物・ 化学的な要因で、さまざまな時空間スケールで大きく変化しています。 エルニーニョに代表される地球規模の海洋気象現象は、数千キロを 移動する生物の産卵・索餌回遊と密接な関係がある一方、幼生や微 小生物の成長・生残には、海洋循環に伴う生物輸送や海洋乱流に 伴う鉛直混合のような比較的小規模な海洋現象が重要な役割を果 たしています。このように生物種のみならず成長段階の違いによって生 物に影響を及ぼす海洋環境は多様であり、さらにそこには人間活動に 伴う様々な現象も加わって、海洋は複雑な様相を呈しているのです。 本分野では、上述した生物を取り巻く海洋環境に着目して、海洋環 境変動に対する生物の応答メカニズムを、研究船による海洋観測、バ イオロギング(生物装着型記録計による測定)、野外調査、数値シミュ レーション、飼育・室内実験などから解明する研究に取り組んでいます。 特に、ニホンウナギやマグロ類をはじめとする大規模回游魚の産卵環 境、初期生活史、回遊生態に関する研究は、外洋生態系における重点 的な研究課題であり、近年では生物進化・多様性保全の観点から、地 球温暖化に対応した産卵・索餌行動、分布・回遊経路、成長・生残の 予測研究にも力を入れているところです。また、アワビやムール貝といっ た底生生物が生息する内湾・海峡域の流動環境や基礎生産環境に 着目した沿岸生態系に関する研究も行っており、様々な学問分野の複 合領域としての総合的な海洋科学の研究と教育を目指しています。 #### 現在の主な研究テーマ - ●ウナギ・マグロなどの大規模回遊魚の回遊生態 - ●産卵生態と卵稚仔輸送に関連した亜熱帯循環系の海洋構造と 変動機構 - ●稚仔魚の摂餌行動に与える乱流の影響 - ●沿岸域に生息する水産資源の再生産機構 - ●黒潮の変動に伴う資源量・来遊量の変動機構 - ●地球温暖化に伴う水産資源の生理生態的影響 The distribution, migration and stock variation of marine organisms fluctuate with physical, biological and chemical marine environments on various temporal and spatial scales. Global oceanic and climatic phenomena represented by El Niño have a close relationship to spawning and feeding migrations of large-scale migrating fishes over several thousand kilometers. Biological transport associated with ocean circulation and vertical mixing caused by oceanic turbulence play very important roles on the growth and survival of larvae and small marine organisms. The marine environments that affect not only species but also growth stages vary widely. Our objectives are to clarify the characteristics of oceanic phenomena related to the ecology of marine organisms and the response mechanisms of marine organisms to global environmental changes through observation, biologging, numerical simulation, and field and laboratory experiments. We aim at the research and education of ocean science as a multidisciprinary domain #### **Ongoing Research Themes** - Ecology of eels and tunas - Oceanic structure and its fluctuation of the North Pacific subtropical gyre in relation to spawning behavior and biological transport - Effects of oceanic turbulence on larval ingestion - Reproduction mechanisms of fisheries resources in coastal areas - Mechanisms of stock and migration fluctuations associated with mesoscale variation of the Kuroshio - Physiological and ecological effects in fisheries resources in relation to global warming ニホンウナギのレプトセファル ス幼生(図1)と数値実験で求め た幼生の輸送経路(図2)。エ ルニーニョ発生年(図2左図) は、幼生がフィリピン東部から 黒潮にうまく乗ることができず に、エルニーニョ非発生年(図 2右図) に比べて、ニホンウナギ が生息できないミンダナオ海流 域に数多くの幼生が輸送され る。事実、エルニーニョの年に はシラスウナギの日本沿岸への 来遊量が減少する。 Fig.1 Fig.2 Picture of the Japanese eel leptocephalus (Fig.1) and its larval transport from spawning ground in the North Equatorial Current reproduced by numerical simulation (Fig.2). Transports of the Japanese eel larvae along the Kuroshio are less than that along the Mindanao Current in El Niño years (Fig.2, left panel) クロマグロ (図3)と小型記録計 によって得られたクロマグロ太 平洋横断経路(図4)。クロマグ 口は北海道沖からカリフォルニ ア沖まで2ヶ月で渡りきることが できる。小型記録計は魚体内 に装着するので、水温・照度な どの環境データが取得できるだ けでなく、体温・水深データから 摂餌生態や体温維持のための 牛理的メカニズムを解明する研 究が可能となる。 Fig.4 Pacific bluefin tuna (Fig.3) and track of a bluefin tuna that traversed the Pacific Ocean, obtained from a micro data logger (Fig.4). They migrate from off Hokkaido to off California in about two months KITAGAWA, T. 兼務教授**1 木村 伸吾 KIMURA, Shingo 兼務助教**2 北川 貴士 Research Associate KITAGAWA, Takashi ※1 大学院新領域創成科学研究科教授 ※2 大学院新領域創成科学研究科助教 KIMURA S ### 研究連携領域 # 海洋アライアンス連携分野 ### **Department of Collaborative Research,** Ocean Alliance Section 海洋アライアンスは、社会的要請に基づく海洋関連課題の解決 に向けて、海への知識と理解を深めるだけでなく、海洋に関する学 問分野を統合して新たな学問領域を拓いていくことを目的に東京大 学に設置された部局横断型の機構と呼ばれる組織です。 本分野では、海洋に関わる様々な学問領域と連携しつつ研究を 進めると共に、海洋政策の立案から諸問題の解決まで一貫して行う ことができる人材を育成するための研究・教育活動を行っています。 #### 現在の主な研究テーマ #### ●回遊性魚類の行動解析と資源管理方策に関する研究 我が国で利用される水産資源には、地域や国の枠を越え、地 球規模で海洋を移動する魚類が多く含まれています。これら 高度回遊性魚類資源の持続的利用を図るため、回遊メカニ ズムの基礎的理解に加え、海洋環境の包括的な把握、さらに 社会科学的側面を総合した統合的アプローチによる管理保 全方策の策定を行っています。 #### ●海洋キャリアパス形成と人材育成に関する研究 海洋は、海運、海岸開発、漁業など多様な価値観が交錯する 場であり、海洋で起こる問題はますます複雑化しています。海 洋問題の解決のためには、海洋のさまざまな分野の横断的知 識が不可欠であり、学際的知識を有する人材育成のための教 育研究を行っています。関係省庁での効率的なインターンシッ プ実習を推進し、学生のキャリアパス形成がより具体的になる ように努めています。 #### ▶陸域での経済活動変遷と地球海洋変動に伴う海洋生態系の応 答に関する研究 地球海洋においては、ENSO等に伴う地球規模の海洋の自 然変動が明らかになる一方で、経済活動の活発化によって人 為的インパクトもますます増大しています。持続的経済活動を 可能とする沿岸域管理方策を構築することを目的として、陸 域経済活動変動と海洋環境変動に対する海洋生態系の応答 の解明に関する研究を行っています。 of our society and of our nation from the global perspective of the related fields of ocean research. The alliance will extend and deepen our understanding of the ocean, develop new concepts, technologies, and industries and will form a distinguished think tank to contribute to our country's ocean related political discussions. The University of Tokyo Ocean Alliance will strive to address the needs of our society with regard to ocean issues, and will consider the future #### **Ongoing Research Themes** #### Migration of fishes and their conservation Fishery resources often involve species that make global scale migrations in the vast open ocean. To begin or expand management and conservation efforts for these migratory species, we use multidisciplinary approaches to study their ecology and ocean environments, as well as the social science aspects of these important fisheries species. # Study on career path and capacity building for addressing Problems in the ocean have been increasingly complicated because of intensified human activities based on conflicting value systems such as coastal development and fisheries. This program aims to facilitate acquiring trans-boundary knowledge for solving the ocean problems through practical approaches. # Response of marine ecosystems to human impacts and global Whereas effects of natural fluctuations such as ENSO events in the ocean have likely always occurred, human impacts are rapidly increasing. The goal of this project is to clarify the impacts of human activities and ocean changes on marine ecosystems in order to provide a scientific basis for integrated coastal management for sustainable development. ト作業 青潮発生時(2007年8月19日)に海底底 上で観測された水温、溶存酸素濃度の水 平分布(左)と数値計算により再現された 水温、溶存酸素濃度の水平分布(右)。青 潮は、人間活動により排出された栄養物 質負荷による酸素消費と天然現象である 吹送流によって生じる。 Map of observed (left panels) and calculated (right panels) temperature (T) and dissolved oxygen (DO) on 19 August 2007, when the upwelling of oxygen depleted water "Aoshio" occurred. "Aoshio" is a composite phenomenon including human impacts (terrestrial nutrient load) and a natural phenomenon (wind-driven circulation). KIMURA S AOYAMA, J. SHIMODE S 兼務教授**1 木村 伸吾 KIMURA, Shingo 特任准教授 青山 潤 Project Associate Professor AOYAMA, Jun 兼務特任准教授**2 下出 信次 Project Associate Professor SHIMODE, Shinji ※1 大学院新領域創成科学研究科教授 ※2 大学院新領域創成科学研究科特任准教授 # 国際沿岸海洋研究センター ### International Coastal Research Center 空から見た大槌湾 Bird's eye view of Otsuchi Bay 大槌湾の砕波帯 Swash zone in Otsuchi Bay 震災後、新たに建造された調査船グランメーユ New research boat "Grand Maillet"
本センターの位置する三陸沿岸域は、親潮と黒潮の混合水域が形成され、生物生産性と多様性の高い海域として世界的にもよく知られており、沿岸海洋研究に有利な立地条件を備えています。2011年3月11日の東北沖大地震およびそれに伴う津波によって、沿岸海洋生態系に大きな擾乱がもたらされました。三陸沿岸海域の物理化学環境や低次生物から高次捕食者に至る生態系が、今後どのように推移していくのかを見届けることは、大変重要な課題です。今後、再び大槌町にセンターを復興し、沿岸海洋研究の国際ネットワークの中核をになうことを目指しています。 The International Coastal Research Center is located in Otsuchi Bay on northern Japan's Pacific coast. The cold Oyashio and warm Kuroshio currents foster high productivity and biodiversity in and around Otsuchi Bay. The large earthquake and tsunami on March 11, 2011 resulted in serious disturbance to the nearby coastal ecosystem. It is very important to monitor physical, chemical, and biological aspects of the ecosystem as it recovers. Thus, we intend to reconstruct the ICRC in Otsuchi in order to contribute significantly to international coastal research. ### 沿岸生態分野 ### Coastal Ecosystem 三陸沿岸域における海象・気象の変動に関する研究を地史的側面も含めて 推進すると共に、沿岸生態系研究に関する国際共同研究体制の構築を目指 している。 The coastal ecology division focuses on promotion of international, collaborative research into the effect of variability in marine and climatic conditions on the modern and historical coastal ecology of the Sanriku area. ### 沿岸保全分野 #### **Coastal Conservation** 沿岸域における生物の生活史や行動生態、物質循環に関する研究を行うと 共に、国際的ネットワークを通じて総合的沿岸保全管理システムの構築を目 指しています。 The coastal conservation division aims to provide a framework for conservation, restoration, and sustainability of coastal ecosystems by focusing on the life history and behavioral ecology of coastal marine organisms and dynamics of bioelements in the coastal areas. # 生物資源再生分野 (2012年度設置予定) Coastal Ecosystem Restoration ### 地域連携分野 #### Regional Linkage 世界各国の沿岸海洋に関する諸問題について、国際機関や各国研究機関との共同研究の実施及び国際ネットワークによる情報交換により研究者のみならず政策決定者、市民等との連携を深めることにより解決を目指す。 The regional linkage division endeavors to coordinate academic programs of coastal marine science by establishing a network of coastal marine science between domestic and foreign universities, institutes, and organizations. 52 ### 国際沿岸海洋 研究センター # 沿岸生態分野 # International Coastal Research Center, Coastal Ecosystem Section 日本の海の沿岸域は、生物の多様性に富み、陸上の熱帯雨林に比較しうる複雑な生態系の構造を持っています。また、沿岸生態系は、栄養塩の供給、仔稚魚の生育場の提供などを通して、沖合域の生態とも密接関係を有しています。しかしながら、沿岸域の生態系の構造と動態については、いまだ解明されていない部分が多く残されています。沿岸生態分野では、沿岸生態系の構造と動態に関する科学的知見を蓄積していくとともに、沿岸生態系の研究に関する国際共同研究体制の構築を目指しています。 本センターの位置する大槌湾には、河口域、岩礁域、砂浜域、沖合域から近隣にそろっており、沿岸生態系に関する研究に適したフィールドを提供しています。この立地を生かし、さらに1977年から継続している大槌湾の各種気象海象要素に関する長期観測テータなど環境要素に関する充実した資料に基づいて、三陸沿岸域の気象海象の変動メカニズムに関する研究、沿岸域に生息する各種海洋生物の生息環境の実態と変動に関する研究、三陸沿岸の諸湾に建設された建造物の沿岸環境に及ぼす影響評価に関する研究などを精力的に推進しています。また、炭酸カルシウムの殻に記録された過去の環境変動を復元することで、沿岸環境の変遷とそれに対する生態系の応答を研究しています。さらに、国内外の研究者との共同研究を活発に展開することによって、三陸沿岸の海洋生態系の構造と動態について、広い視野からの理解を目指した研究を進めています。 #### 現在の主な研究テーマ #### ●三陸諸湾の海洋環境変動に関する研究 三陸の数多くの湾は、豊かな沿岸生態系をはぐくむ場になっています。それらの湾に建造物など人為起源の環境変動要因がもたらされたときに沿岸環境がどのように応答するか、現場観測データに基づいた基礎的な知見の蓄積を進めています。 ●三陸沿岸海域における気象・海象の変動特性に関する研究 三陸沿岸海域における気象・海象のさまざまな時間スケールの 変動特性に関して、その実態とメカニズムを数値モデルと現場 観測を連携させて研究しています。 #### ●大槌湾の生態系の構造と機能 大槌湾に生息する各種海洋生物の生態に関して、その成育場となっている藻場や砕波帯などの海洋構造やその機能に関する研究を進めています。 #### ●炭酸塩骨格を用いた古環境復元 炭酸塩骨格は日輪や年輪などの成長輪を刻みながら付加成長するため、その成長線幅や殻の成分から過去の環境を復元することが可能です。台風など数日から北太平洋数十年規模変動など数十年まで、様々なスケールでの過去の沿岸環境を明らかにします。 Coastal areas of Japan have high biodiversity comparable to that of tropical rain forests. However, partly because of their complexity, fundamental questions remain regarding the structure and dynamics of coastal ecosystems. To understand such coastal ecosystems, basic studies on the ecology of each element and interactions between them are required. The main goal of the coastal ecosystem division is to study marine biodiversity in coastal waters and the interactions between marine organisms and their environments. Special emphasis is currently placed on: (1) environmental impacts of coastal marine structures upon marine ecosystems, and (2) historical changes of coastal environments and ecosystems through promotion of international collaborative studies. #### **Ongoing Research Themes** - Changes of the coastal marine environment in the bays of the Sanriku Coast: Oceanographic structures, such as the large Kamaishi breakwater, and the associated changes to coastal bays are studied based on data analysis of oceanographic observations. - •Mechanisms of oceanic and atmospheric variability: Variability of oceanic and atmospheric conditions along the Sanriku Coast region is investigated by the analysis of long-term records of oceanographic and meteorological observations at the International Coastal Research Center. - ■Marine ecosystem in Otsuchi Bay: Environmental conditions in the Sargassum zone in Otsuchi Bay are studied in relation to the marine habitat. - Past environmental reconstruction using biogenic calcium carbonate: Biogenic calcium carbonate are useful archives of past environment. Growth rate and geochemical proxy provide various kind of environmental information. Daily and annual growth lines enable to reconstruct at various time scale, from daily to decadal, such as typhoon or Pacific Decadal Oscillation. 釜石湾内の海洋環境調査 Observations of the coastal environment in Kamaishi Bay 教授(兼) MICHIDA, Y. TANAKA. K. SHIRAI, K. Professor 准教授 Associate Professor 助教 Research Associate MICHIDA, Yutaka 田中 潔 fessor TANAKA, Kiyoshi 白井 厚太朗 pciate SHIRAI, Kotaro 道田 豊 ### 国際沿岸海洋 研究センター ## 沿岸保全分野 ### **International Coastal Research Center, Coastal Conservation Section** 河口域を含む沿岸域は生産性が高く、漁業をはじめとして多目 的に利用される海域であり、また人間と海とのインターフェースとし て人間活動の影響を強く受ける海域です。20世紀後半に急激に 進んだ生物多様性の低下や資源枯渇、環境汚染、気候変動など の生態系の機能低下は沿岸域でとりわけ顕著に現れています。ま た、日本列島の三陸沿岸域は2011年3月11日に発生した大地震と それに伴う大津波によって生態系に大きな攪乱がもたらされまし た。沿岸域の健全な生態系を回復することは21世紀を生きる私た ちに課された大きなテーマなのです。 本分野では沿岸域における生物の生活史や海洋高次捕食動物 の行動生態、物質循環過程に関する研究に取り組むとともに、国 際的ネットワークを通じて総合的沿岸保全管理システムの構築を 目指しています。サケ、アユ、シラウオ、イトヨなどの三陸沿岸に生息 する沿岸性魚類や通し回游魚の分布・回游・成長・牛残、サケ・海 鳥・イルカさらにウミガメやアザラシなどに搭載したデータロガーや 画像ロガーなどから得られる行動情報や生理情報の解析、生物 活動を含む物質循環過程において溶存態・懸濁態成分が果たす 役割の解明などを目標とした研究を行っています。本センターの調 査船や研究船などを用いたフィールド研究を軸として、それに関わ るデータ集積・分析・解析のための新しい手法や技術の開発を進 めています。 #### 現在の主な研究テーマ #### ●通し回遊魚の初期生活史に関する研究 アユやサケなどの通し回遊魚の初期生活史における分布・回 遊・成長を調へて生き残り過程を明らかにするとともに、資源 変動メカニズムを生息環境との関わりから解明する。2011 年3月11日に発生した大地震・大津波が三陸沿岸域の魚類 資源に与えた影響と回復過程をモニタリングするための調査 を進める。 #### ●海洋高次捕食動物の行動生態研究 動物に搭載可能な小型データロガーを用いて、海洋高次捕食 動物の視点から海洋 環境を把握しつつ、動物の行動や生理 情報より、彼らが海洋環境にいかに適応し、日々どう振る舞っ ているのかを調べる。 #### ●生元素の動態に関する研究 生物活動を含む沿岸域の物質循環において、溶存態・懸濁 態成分が果たす役割について野外観測と室内実験を通して 明らかにする。 In the 20th century, serious damage to the coastal ecosystem has occurred and is evident as a rapid decrease in biodiversity and extensive resource depletion that is exacerbated by pollution and global climate change. In addition, the large earthquake and tsunami on March 11, 2011, caused serious disturbance to the Sanriku coastal ecosystem. Conservation and restoration of coastal ecosystems in general is a critical issue for societies in the 21st century. The coastal conservation division focuses on: (1) life history and behavior of coastal and diadromous fishes such as salmon, ayu, icefish, and stickleback, (2) behavioral ecology of animals in relation to their surrounding environments using animal-borne data loggers (Bio-Logging), (3) the role of dissolved and particulate matter in material cycling in coastal environments. This division also covers research plans on conservation and habitat restoration. #### **Ongoing Research Themes** - ●Early life history of diadromous fishes: Distribution, migration and growth in the early life history of diadromous fishes are investigated in relation to environmental factors. The effect of the March 11, 2011 Great East Japan Earthquake and associated tsunami on coastal fish resources is also studied. - ●Behavioral ecology of marine top predators: Animalborne data loggers are used to investigate the behavior and physiology of animals, as well as their surrounding environmental conditions. - ●Dynamics of bioelements: Roles of dissolved and particulate matter in material cycling in coastal environments are investigated through field observations and laboratory experiments. 3次元経路測定記録計を背負ったアカウミガメ A loggerhead turtle equipped with a 3-D data logger SATO, K. FUKUDA H 教授 大竹 二雄 OTAKE, Tsuguo 准教授 佐藤 克文 Associate Professor SATO, Katsufumi 助教 福田 秀樹 Research Associate FUKUDA, Hideki CATALOG ATMOSPHERE AND OCEAN RESEARCH INSTITUTE THE UNIVERSITY OF TOKYO ### Center for International Collaboration わが国は四方を海に囲まれ、管轄海域は世界第6位の広さです。 海洋国家として「海を知る」ことに関する国際的枠組みの中で権利と 義務を認識し、海洋科学研究を進めることが国益の観点からも重 要です。しかし、全地球的な海洋科学の国際的取組みや周辺関係国 との協力は、個々の研究者や大学等で行えるものではありません。 2010年4月、海洋研究所は柏キャンパスに移転し、気候システム研究センターと統合して、「大気海洋研究所」となりました。それに伴い、「海洋科学国際共同研究センター」も「国際連携研究センター」(以下本センター)となり、さらに広い研究分野の国際的活動を展開することになりました。本センターは、わが国の大気海洋科学の国際化の中心となり、国際的枠組みによる調査や人材育成の企画等を行い、各種の研究計画を主導する重要な役割を担います。 本センターは、国際企画・国際学術・国際協力の三分野からなり、 大気海洋に関する国際共同研究及び国際研究協力等を推進する ことを目的としています。 国際企画分野では、海洋や気候に関する政府間組織でのわが国の活動や発言が、科学的な面ばかりでなく社会的にも政府との緊密な連携のもとに国際的な海の施策へ反映されることを目指します。 国際学術分野では、国際科学会議(ICSU)関連の委員会などへの人材供給や、国際共同研究計画の主導によって、わが国の国際的な研究水準や立場が高まることを目指します。 国際協力分野では、国際的視野に立って活躍できる研究者を育成し、本センターを核とする研究者ネットワークを形成し、アジアを中心とした学術交流や共同研究体制の発展を主導し支援します。 また、本センターは、本研究所と諸外国の研究機関との学術協定 の調整、国外客員教員の招聘等を行うほか、国際的な研究動向を国 内の研究者と共有し、国際的研究戦略を立案し推進します。 In April 2010, we have established the Atmosphere and Ocean Research Institute (AORI) as a new institute to cover the interdisciplinary ocean and atmospheric sciences. At the same time, we have established a new center for further strengthening the activities of international academic exchange in this scientific field. The Center for International Collaboration is the successor to the Center for International Cooperation, which had been operating for over 15 years. The center consists of three divisions: International Scientific Planning, International Advanced Research, and International Research Cooperation. The Center for International Collaboration (CIC) will promote the internationalization of the Atmosphere and Ocean Research Institute, and will help it continue to be a leading institution that creates ties with other institutions and is an international center for atmosphere and ocean research: - To plan,
promote, and support international activities based on inter-governmental agreements. - 2. To promote and support large joint international research projects. - To promote academic exchanges and personnel development with Asian and other countries. - To strengthen the role of the institute as an international center for research on coastal oceanography. - To develop the next generation of researchers by supporting the overseas dispatch of young researchers. - To invite non-Japanese visiting professors and actively exchange students - To expand and strengthen the international dissemination of research results (including using academic journals and academic databases). 国際センターシンボルマーク Original symbol mark of CIC 大気海洋研究所におけるベトナム科学技術アカデミー (VAST)と研究協力に関する会議 An international meeting on cooperative research with the Vietnamese Academy of Science and Technology at the Atmosphere and Ocean Research Institute 政府間海洋学委員会の会議に日本代表として出席 Participation in an IOC meeting as a member of the Japanese delegation INOUE, K. IMASU, R. PARK, J. O. 准教授 (兼) 朴 進午 Associate Professor PARK, Jin-Oh 幅広い研究分野などをカバーするため、3名の准教授が兼務しています ## 国際企画分野 # Center for International Collaboration, International Scientific Planning Section 本分野では、大気と海洋の科学に関する国際共同研究を積極的に推進しています。特に、ユネスコ政府間海洋学委員会 (Intergovernmental Oceanographic Commission: IOC) が進める各種のプロジェクト等において重要な役割を担っています。 具体的には、IOCの地域委員会である西太平洋委員会 (Sub-commission for the Western Pacific: WESTPAC) における海洋科学や海洋サービスの進め方に関する専門家グループのメンバーとして助言を行っているほか、国際海洋データ・情報交換 (International Oceanographic Data and Information Exchange: IODE) においても各種のプロジェクト等の立案および推進に参画しています。 道田研究室では、海洋物理学を基礎として、駿河湾、大槌湾、 釜石湾、タイランド湾など国内外の沿岸域において、水温・塩分・ クロロフィル・海流など現場観測データの解析を中心として沿 岸海洋環境の実態とその変動、および海洋生物との関係に関す る研究を進めています。また、漂流ブイや船舶搭載型音響ドップ ラー流速計による計測技術に関する研究も進めており、その結 果を生かして、沿岸環境に関する研究のみならず、外洋域におけ る海洋表層流速場の変動に関する研究も行っています。さらに、 2007年の「海洋基本法」の成立以降、わが国の海洋政策の中で注目を集めている「海洋情報」に関して、海洋情報管理に関する分析を行い、そのあり方や将来像について専門的立場からの 提言などを行っています。 #### 現在の主な研究テーマ #### ●駿河湾奥部のサクラエビ産卵場の海洋環境 駿河湾奥部には有用魚種であるサクラエビが生息し、地域の 特産品となっています。その生残条件および資源量変動に影響を及ぼす湾奥部の流速場を含む海洋環境について、現場 観測データの解析を中心として研究を進めています。 #### ●三陸諸湾の海洋環境変動 三陸のリアス式海岸には太平洋に向かって開いた数多くの湾が存在し、豊かな沿岸生態系をはぐくむ場となっているとともに、恵まれた環境を生かした海洋生物資源の供給の場となっています。それらの湾に建造物など人為起源の環境変動要因がもたらされたときに沿岸環境がどのように応答するか、釜石湾を例にして現場観測データに基づいた基礎的な知見の蓄積を進めています。 #### ●海洋情報管理に関する研究 海洋の管理を行う際の基本となる情報やデータの管理のあり方について、国際動向や関係諸機関の連携等を考慮した分析を行っています。 This group aims to participate in the promotion of international research projects on atmosphere and ocean sciences. In particular, the members of the group play important roles in many projects promoted by the Intergovernmental Oceanographic Commission (IOC) of UNESCO, by providing professional suggestions in the planning of oceanographic research and ocean services of the IOC Sub-Commission for the Western Pacific (WESTPAC) as a member of the WESTPAC Advisory Group. We are also actively participating in oceanographic data management with the International Oceanographic Data and Information Exchange Programme of the IOC. From the scientific point of view in the group, we carry out studies on the coastal environment and its variability particularly in relation to marine ecosystem dynamics in some coastal waters of Japan by analyzing physical oceanographic observation data. We also promote technical studies to improve observations with drifters and shipmounted ADCPs for investigation of the surface current field in the open ocean. In addition to the above oceanographic studies, the group contributes to the issues of ocean policy of Japan, including oceanographic data management policy that has become one of the important subjects after the enforcement of "Basic Ocean Acts" in 2007. #### **Ongoing Research Themes** - Oceanographic conditions in Suruga Bay: Oceanographic conditions controlling the retention mechanism of an important fisheries resource in Suruga Bay, is studied by analyzing observational data of surface currents and oceanographic structure in the bay. - Mechanisms of oceanic and atmospheric variability: Variability of oceanic and atmospheric conditions in the Sanriku Coast area is investigated by the analysis of long-term records of oceanographic and meteorological observations at the International Coastal Research Center. - Oceanographic data and information management: Data management, which is one of the key issues in the policy making processes for ocean management, is studied based on the analysis of related international activities and inter-agency relationships. 駿河湾における観測 Oceanographic observation in Suruga Bay, Japan 教授 Professor 道田 豊 MICHIDA, Yutaka MICHIDA, Y. 56 # 国際学術分野 ### Center for International Collaboration, International Advanced Research Section 本分野は、非政府組織である国際科学会議(ICSU)の学際団体である地球圏ー生物圏国際共同研究計画(IGBP)の海洋に関するコアプロジェクト(AIMES, GLOBEC, IGAC, iLEAPS, IMBER, LOICZ, PAGES, SOLAS)や、世界気候研究計画(WCRP)の研究プロジェクト(CLIVAR)、全球海洋観測システム(GOOS)、海洋研究科学委員会(SCOR)の活動、海洋の微量元素・同位体による生物地球化学的研究(GEOTRACES)、海洋生物の多様性と生態系を把握しようとする海洋生物センサス(CoML)、統合国際深海掘削計画(IODP)、国際中央海嶺研究計画(InterRidge)をはじめとする、わが国が関わる大型国際共同研究を企画・提案・実行する活動を支援しています。 #### 研究について 大気圏・水圏・陸圏において物質が気体・液体・固体と形を変えながら循環しています。地球表面の70%を占める海洋と地球全体を覆っている大気との間で、物質循環の過程や速度、相互間作用を把握することが、海洋生態系変化や気候変化の解明につながります。大気物質が海洋への沈着し、海洋物質が大気へ放出されるなど、様々な挙動を示します。陸圏での人間活動による土地利用の変化や、化石燃料の燃焼の増大により、大気中の化学成分の組成や濃度が変化しつつあります。大気圏での変化が海洋表層での化学成分に影響を与え、海洋生態系にも変化を及ぼします。 本分野の研究目的は、海洋での環境変化が地球大気の組成や気候に影響を及ぼすことを定量的に理解することです。特に、海洋生物起源気体の温暖化への寄与や、粒子化に伴う抑制効果の予測を目指しています。 #### 現在の主な研究テーマ - ●海洋大気中から海洋表層へ沈着する化学組成とフラックス:海 洋への微量金属と生物利用元素の輸送と沈着についての研究 - ●海洋環境中の粒子中の微量金属の生物地球化学的研究 - ●微量元素の大気と海洋間の物質循環:海洋大気中での降水中の人為起源物質や生物起源物質の挙動とその過程の研究 - ●化学成分の自動連続測定分析システムの開発:高時間分解能で大気中のエアロゾル中の化学成分を高感度に連続測定可能な船舶搭載装置の開発研究 The division of international advanced research promotes and supports large joint international research projects associated with Japanese scientific community, especially, IGBP Core projects under ICSU, CLIVAR under WCRP, projects and working groups under SCOR, CoML, InterRidge, and others related to atmosphere and ocean sciences activities of non-governmental organizations. #### **Research Objectives** Climate and environmental change will have significant impacts on biogeochemical cycling in the ocean, on atmospheric chemistry, and on chemical exchange between the ocean and atmosphere. The exchanges include atmospheric deposition of nutrients and metals that control marine biological activity and hence ocean carbon uptake, and emissions of trace gases and particles from the ocean that are important in atmospheric chemistry and climate processes. Our goal is to achieve quantitative understanding of the key biogeochemical interactions and feedbacks between ocean and atmosphere. #### **Ongoing Research Themes** - Chemical compositions and their fluxes to ocean from marine atmosphere: Study of transport and deposition of trace metals and bioavailable elements over the ocean. - Biogeochemistry of particulate trace metals in the marine environment - ●Atmosphere-Ocean interaction of trace elements: The behaviors of anthropogenic and biogenic elements in precipitation on the marine atmospheric processes. - Development of automatic measurement of chemical composition: The development of a rapid measurement system of chemical composition and its application to the marine atmospheric measurements on shipboard. 大気・海洋表層間のガスと粒子の相互作用 Interference of gas and particle between atmosphere and ocean surface UEMATSU, M. 教授 植松 光夫 Professor UEMATSU, Mitsuo # 国際協力分野 ### Center for International Collaboration, International Research Cooperation Section アジアの海の最大の特徴は、あらゆる意味でその多様性にあります。地図をみれば、東南アジアには複雑な海岸線を持つ陸地と多くの島々があり、そこには遙か古代から生き続けてきた生物と、新生代以降の環境変動をへて多様な進化をとげた生物が共存しています。一方、東アジアの海は黒潮や親潮などの大海流や、亜熱帯から亜寒帯までの多様な気候に加え、プレート境界、海溝、縁辺海など特徴のある地理を示し、生物多様性のみならず、海洋資源もきわめて豊かな海域です。また、アジア諸国はその文化、経済、政治のいずれにおいても非常に多様であり、資源の利用、環境問題、海洋研究をはじめとする海との関わり方も国により様々です。この海の自然を人類にあたえられた恩恵として維持、利用していくためには、その基礎となる海洋研究を、アジアの国々がお互いの文化を深く理解しながら協力して進めていく必要があります。 本分野では、このような視点から、アジアを中心とした海洋の研究・教育のためのネットワークを整備・拡充するとともに、各国における最先端の海洋学の拠点づくりと研究者の交流をつうじて、地球規模の国際的取り組みにも貢献できる次世代を担う研究者の育成を目指します。 ### 現在の主な研究テーマ - ●東南アジア海域の生物多様性調査:東南アジア諸国との協力により、世界で最も豊かなこの海域の生物多様性の現状把握と維持・保全を目指します。 - ●中層生態系の種多様性と食物網:海の中で最も種多様性の高い「中層」に着目し、多様性の創出と種の共存機構を食物網の観点から解明します。 - ●動物プランクトンの進化機構:物理的障壁の乏しい漂泳生態系における動物プランクトンの進化機構を分子系統地理学的アプローチにより解明します。 - ●動物プランクトンの機能形態学:極めて多彩な動物プランクトンの形態に着目し、その機能と生態学的意味を組織化学、生化学、行動学などの手法を駆使して究明します。 The essence of the Asian seas is in the many different aspects of their diversity. In a map of Southeast Asia you will find land-masses with complex coastlines and many islands, where species surviving from ancient ages and those diversified through more-recent environmental changes coexist, resulting in the highest diversity of marine life in the world. On the other hand, East Asia encompasses major currents such as Kuroshio and Oyashio, diverse climate zones ranging from subtropical to subarctic, and characteristic geography such as plate-boundaries, trenches, and marginal seas, resulting in its rich biodiversity and marine resources. In turn, the Asian countries are highly diverse in their culture, economies, and politics, resulting in different circumstances in their relationships with the sea, such as those in resource use, environmental issues, and marine research. This necessitates collaboration in marine science among Asian countries with a mutual understanding of our culture and approach towards sustainable use of the gifts from the sea. With this viewpoint, the Division of International Research Cooperation works towards consolidating and expanding a network of marine research and education centered on the Asian Region. We are also working towards promotion of next-generation researchers who will contribute to global international activities through support for establishing top-level core universities/institutes of marine science in collaborating countries and mutual exchange of researchers. #### **Ongoing Research Themes** - Census of Marine Life in Southeast Asia: A collaborative project between Southeast Asian countries, aiming at understanding the present status of
marine biodiversity and establishing ways of its sustainable use. - Species Diversity and Food Web in the Mid-Water Ecosystem: Elucidating mechanisms generating and maintaining the high species diversity in the mid-water ecosystem, with special reference to its food-web structure. - Evolutionary Mechanisms of Zooplankton: Understanding the evolutionary mechanisms of zooplankton in an environment without apparent physical barriers through a molecularphylogeographic approach. - Functional Morphology of Zooplankton: Understanding the function and ecological significance of highly diverse forms of zooplankton, by applying a variety of tools such as those of histochemistry, biochemistry, and behavioral ecology. マレーシアで開催したトレーニングコースでのプランクトン採集 Plankton sampling in a training course held in Malaysia NISHIDA, S. 58 教授 Professor 西田 周平 NISHIDA, Shuhei ## Center for Earth Surface System Dynamics 本研究センター(以下、変動センターと略)は、2010年に旧海洋研究所と旧気候システム研究センターが統合して大気海洋研究所が生まれる過程で、両者のシナジーを生み出すメカニズムとして設置されました。ここでは、既存の専門分野を超えた連携を通じて新たな大気海洋化学を開拓することを目的としています。変動センターの4つの分野では、研究系の基礎的研究から創出された斬新なアイデアをもとに、次世代に通じる観測・実験・解析手法と先端的モデルを開発し、過去から未来までの地球表層圏システムの変動機構を探求することが重要なミッションです。 変動センターでは、文部科学省と区別経費事業「地球システム変動の総合的理解――知的連携プラットフォームの構築」を行っています。本事業では観測・実験による実態把握・検証および高精度モデリングの連携により、機構と海洋生態系の変動を理解します。また、全国の大学等の研究者が共同でモデルと観測システムを開発・利用し、多分野の知識をモデル化・データベース化し、客観的な共通理解を促進するための知的連携プラットフォームの構築を目指します。 The Center for Earth Surface System Dynamics (CESD) was established in 2010 following the merger of Ocean Research Institute and Center for Climate System Research into the Atmosphere and Ocean Research Institute. The four divisions of CESD will work to create a new frontier for studying the dynamics of the earth's surface system through development of innovative observation and modeling studies At the CESD, our current focus is the MEXT-sponsored project "Construction of a cooperative platform for comprehensive understanding of earth system variation." The project includes coupling of sophisticated computer simulation and direct observations to better understand climate, global change, and ecosystems. We also encourage collaborative studies with other institutions in Japan to develop a common understanding of earth surface systems. ## 古環境変動分野 # Center for Earth Surface System Dynamics, Paleo-environmental Research Section 本分野では主に最近200万年間の気候変動や表層環境変動について、地球化学的手法を用いて復元するとともに、大気ー海洋結合大循環モデルであるMIROCや物質循環モデル、それに表層の荷重再分配に伴う固体地球の変形 (GIA) モデルなどを組み合わせることにより、表層環境システムについての理解を深める研究を進めています。 対象としているフィールドや試料は、日本国内外のサンゴ礁、 気候システムで重要な役割を果たしている西赤道太平洋暖水 プール近海、モンスーン影響下の陸上湖沼および海底堆積物、 過去の降水を記録している陸上の鍾乳石や木材試料、南極氷床 コアや氷床に被覆されていない地域の岩石/堆積物試料、アン デス山脈や日本国内の山地などです。 国際プロジェクトにも積極的にかかわっており、国連の気候変動に関する政府間パネル(IPCC)や地球圏—生物圏国際協同研究計画 (IGBP)、古環境変遷計画 (PAGES)、統合国際深海掘削計画 (IODP) や国際地球科学対比計画 (IGCP) などに参画しています。 #### 現在の主な研究テーマ #### ●モンスーン気候地域の古気候変遷に関する研究 南および東アジアにおいてサンプルを採取し、地球化学分析 とAOGCMとの比較で、モンスーン変動についての理解を進め る研究を行っています。 #### ●海水準変動 過去の氷床融解に伴う海水準変動について、地球科学データの採取と固体地球の変形モデルとの併用により、全球気候変動との関係について研究しています。 #### ●南極氷床変動の安定性に関する研究 南極の陸上および海洋堆積物に保存された過去の融解の記録の復元を詳細に行い、気候システムの中での南極氷床の役割について理解するための研究を行っています。 Understanding past environments is key to projecting future changes. Thus, we investigate climate and earth surface systems over the past 200,000 years, during which time global climates have fluctuated dramatically with glacial-interglacial cycles and accompanying changes in atmospheric greenhouse gas levels. Combined observational and modeling studies are a unique feature of CESD. Various geographic areas are targeted for collecting samples including South and South East Asia, Pacific coral reefs, and Antarctica. A state-of-the-art climate model (MIROC) is used for paleoclimate studies, whereas solid earth deformation modeling to understand glacio-hydro-isostatic adjustment (GIA) is employed to quantitatively deduce past ice volume changes. Our group is also involved heavily with international collaborative programs, such as IPCC, IGBP, PAGES, IODP and IGCP. #### **Ongoing Research Themes** - ●Paleoenvironmental reconstruction in monsoon regions - Sea level changes - Stability of Antarctic Ice Sheet 地球表層環境を保存しているさまざまな試料と分析のための装置 (a. サンゴ b.サンゴ化石 c.南極の迷子石 d. 巨木試料 e.海洋堆積物 f. レーザー/高分解能誘導プラズマ質量分析装置) Various geological archives recording paleoenvironmental information (a, b: corals, c: glacial boulder, d: tree, e: marine sediments), and the mass spectrometry to deduce isotopic signatures from the samples (f: Laser ablation sector field high resolution ICP MS). 准教授 (兼) Associate Professor 横山 祐典 YOKOYAMA, Yusuke YOKOYAMA, Y. 60 # 海洋生態系変動分野 # Center for Earth Surface System Dynamics, Ecosystem Research Section 我々人類は、水産資源をはじめ海洋生態系がもたらす恩恵を 享受していますが、その豊かさや構造は物理環境の変化に応答 して、ダイナミックに変動しています。本分野では、観測とモデリ ングの融合を通して、海洋生態系の構造を理解し、海洋生物資 源の動態を解明することを目指しています。 構成要素が複雑に相互作用する海洋生態系のモデル化には、個々の現象の精査と、キープロセスの抽出、モデルパラメータの検証が必要です。私たちは、観測等から得られる実証的知見とモデリングの相互フィードバックを軸としたアプローチを行っています。研究対象海域は、北太平洋を中心とした外洋域と日本の沿岸域で、東日本大震災に伴う津波により甚大な被害を受けた、三陸沿岸域の物理環境・生態系の現場調査とモデリングにも、重点を置いて取り組んでいます。 #### 現在の主な研究テーマ #### ●外洋生態系モデリング 北太平洋を主対象に、プランクトンや浮魚類の動態を表現する コンポーネントモデル、物理—低次生産—浮魚結合モデルの 構築に取り組んでいます。 #### ●海洋中規模渦・前線に関する研究 外洋生態系の動態に密接に関係する海洋の中規模渦と前線の 実態と力学解明のため、観測、データ解析と数値実験により取 り組みを進めています。 ### ●沿岸域物質循環観測 三陸、若狭湾を主対象に、流動、水塊特性、混合過程の観測を行っています。 #### ●沿岸域物理環境モデリング 湾スケールの物質循環を再現するモデルの構築を進めています。沿岸域の観測データの他、陸域起源物質の影響評価、外 洋モデルとの結合も行っています。 #### ●沿岸域複合生態系モデリング 河口干潟・岩礁藻場・外海砂浜等、沿岸域の生態系をさらに 細分化し、各個生態系での低次生産および高次生物の動態 のモデル化を通して、複合系としての沿岸生態系の役割評価 を目指しています。 Productivity and diversity of marine ecosystem show dynamic fluctuation in response to variations in physical environment. Our research section aims to understand the structure of marine ecosystem and elucidate the variability in living marine resources through integration of observation and modeling. Because components of marine ecosystems interact with each other, modeling requires investigation of individual phenomena, extraction of key processes, and validation of model parameters. Therefore, our approach is based on mutual feedback between observational data and model simulations. Target fields of modeling are the open ocean (mainly the North Pacific) and Japanese coastal waters. We also focus on field surveys and modeling of physical environments and ecosystems of the Sanriku area, which was severely damaged by the Tsunami in March 2011. #### **Ongoing Research Themes** - Open ocean ecosystem modeling - Meso-scale eddies and fronts - Observation for material cycling in coastal waters - ■Coastal circulation modeling - ■Coastal ecosystem modeling 実証的な知見に基づいた生態系モデリング (イメージ) Schematic image of the modeling approach based on observational data HASUMI, H. 准教授 (兼) Associate Professor 准教授 Associate Professor 羽角 博康 HASUMI, Hiroyasu 伊藤 幸彦 ITOH, Sachihiko ## 生物遺伝子変動分野 ### Center for Earth Surface System Dynamics, Genetic Research Section 数日オーダーの短時間スケールから数億年オーダーの長時間 スケールまで、生命は絶え間ない環境の変化に応じて適応・進 化してきました。この複雑な過程を解き明かす上で強力な手がか りとなるのが、生物の持つDNA配列全体にあたるゲノム、発現 しているRNAの網羅的な計測であるトランスクリプトーム、環境 中のDNAの網羅的な計測であるメタゲノムなどのオーミクスデー タです。特に、生物学に革命を起こしつつある超高速遺伝子配 列解析装置 (第2世代シーケンサ) は、これらの網羅的データを 様々な問題を解くために自在に計測できる研究環境を生み出し ました。また、それと同時に、これらの網羅的データを俯瞰的な 視点から解析し新しい概念や仮説へ結びつけていくための技術 であるバイオインフォマティクス (生命情報科学) が、これからの 生物学に必須な学問分野として注目されるようになりました。 地球表層圏変動研究センターの他分野と同じく2010年に 設置された新しい分野である生物遺伝子変動分野では、生物 学における近年の急激な技術革新を背景に、ゲノム進化解析、 環境・生態系オーミクス、バイオインフォマティクスなどに関わ る新たな解析手法を開拓するとともに、生命と地球環境の相互 作用とそのダイナミクスを、海洋という魅力的な舞台において探 求していきます。 From short time scale of days to long time scale of billions of years, life has continuously adapted to and evolved depending on the environment. Our section studies interactions between organisms and the earth environment, as well as their dynamics in the ocean, by applying emerging technologies such as bioinformatics, genome evolutionary analyses, and ecosystem omics #### **Ongoing Research Themes** - ●Genome Evolutionary Analysis - ●Ecosystem Omics - Bioinformatics Genome sequences serve as both foundations for life activities and records for evolutionary histories of life. Transcriptomes fully contain information about the active genes in genomes, and metagenomes contain information about ecology of environmental microbes. We analyze these data by adopting bioinformatic approaches to decipher how life adapts to environmental changes, what types of interactions between organisms and the environment produce ecological dynamics, and how organisms and the earth have interwoven their long history. #### 現在の主な研究テーマ - ●ゲノム進化解析 - ●環境・生態系オーミクス - ●バイオインフォマティクス ゲノム情報は生命活動の礎となるものであり、また祖先生命か ら現代の生命に至る歴史の記録でもあります。トランスクリプ トーム情報にはゲノム中で機能している遺伝子全体について の、メタゲノム情報には環境微生物の生態系についての、それ ぞれ豊富な知識が埋もれています。超高速遺伝子配列解析装 置によって取得した、あるいは世界の研究者がデータベース に登録したこれらのデータを解析することで、生命が環境の 変化にどのように応答するか、生態系のダイナミクスが生命と 環境のどのような相互作用により生み出されているか、さらに 生命と地球が長い時間の中でどのような歴史を相綴ってきた か、などを明らかにするための研究を行っています。 ゲノム情報を用いて再構築した生命の進化系統樹 Phylogenetic tree of life reconstructed using genome information IWASAKI, W. 教授 講師 木暮 一啓 KOGURE, Kazuhiro IWASAKI, Wataru # 大気海洋系変動分野 ### Center for Earth Surface System Dynamics, **Atmosphere and Ocean Research Section** 本分野では、大気海洋系の観測とモデリングを通して、大気 海洋系の物理化学構造や変動機構の解明を行います。 大気海洋研究所では、新しいタイプの大気モデルとして、 全球非静力学モデルNICAM (Nonhydrostatic ICosahedral Atmospheric Model) の開発を進めています。全球非静力学モ デルは、地球全体を数km以下の水平メッシュで覆う超高解像度 の大気モデルです。従来の温暖化予測等に用いられている大気 大循環モデルは、水平解像度が数10km以上に止まらざるを得 ず、大気大循環の駆動源として重要な熱帯の雲降水プロセスを 解像することができませんでした。このような雲降水プロセスの 不確定性さが、気候予測の最大の不確定性の要因のひとつで す。全球雲解像モデルは、雲降水プロセスを忠実に表現するこ とで、この不確定性を取り除こうとするものです。NICAMは、ユ ニークなメッシュ構造を持っています。正20面体を分割すること で、球面上をほぼ一様な間隔で覆うメッシュを採用しています。こ のモデルによって、従来の方法では予測することが難しかった台 風の発生・発達や、夏季の天候、豪雨の頻度、熱帯気象やマッ デン・ジュリアン振動について、より信頼性の高いシミュレーショ ンが期待されます。NICAMを海洋モデルCOCOやエアロゾルな どの他のプロセスモデルと結合することによって、大気海洋変動 研究を進めていきます。 #### 現在の主な研究テーマ - ●大気大循環力学と高解像度大気海洋モデリング - ●雲降水システム研究と雲モデルの不確定性の低減 - ●衛星リモートセンシングと数値モデルの連携研究 The goal of this section is to understand the physical/chemical structure of the atmosphere-ocean system and its change mechanisms through synergetic observational research and model simulations. A new type of a global atmospheric model called the Nonhydrostatic ICosahedral Atmospheric Model (NICAM) is being developed in our group. NICAM
is a global model with a horizontal mesh size of less than a few kilometers that explicitly resolves convective circulations associated with deep cumulus clouds that are particularly seen in the tropics. NICAM should improve representations of cloud-precipitation systems and achieve less uncertainty in climate simulations by explicitly calculating deep cumulus clouds. NICAM has a unique mesh structure, called the icosahedral grid, that extends over the sphere of the Earth. Using NICAM, we can simulate realistic behavior of cloud systems, such as tropical cyclones, heavy rainfall in summer seasons, and cloud-systems in the tropics, over the global domain together with the intra-seasonal oscillation including the Madden-Julian Oscillations. We intend to use NICAM by coupling with the ocean model (COCO) and other process models such as an aerosol-transport model to further atmosphere and ocean research. #### **Ongoing Research Themes** - General circulation dynamics and high-resolution atmosphere and ocean modeling - Research on cloud-precipitation systems and reduction of uncertainty of cloud models - Collaborative research between satellite remote sensing and numerical modeling NICAMにより再現された全球の雲分布:2つの熱帯低気圧が再現されて Cloud images simulated by NICAM realistically depicting two tropical cyclones NICAMによる雲と小粒子エアロゾル (緑) と大粒子エアロゾル (赤) のシ Simulation of clouds and aerosols (red for coarse and green for fine particles) SATOH, M. 教授 教授 Professor 中島 映至 NAKAJIMA, Teruyuki 佐藤 正樹 SATOH, Masaki # 年 報 | ANNUAL REPORT | 国除肠刀
INTERNATIONAL COOPERATION | 66 | |---|----| | 共同利用研究活動
COOPERATIVE RESEARCH ACTIVITIES | | | L利用者実績
User Records | 74 | | └研究航海
Research Cruise | 77 | | └研究集会
Research Meeting | 83 | | 教育活動
EDUCATIONAL ACTIVITIES | 85 | | 予算
BUDGET | 88 | | 研究業績
PUBLICATION LIST | 89 | # 国際協力 INTERNATIONAL COOPERATION ### 国際共同研究 **International Research Projects** 東京大学大気海洋研究所が参加している現在進行中の主な研究プロジェクト Ongoing main research projects in which AORI participates #### **CLIVAR** 気候変動と予測可能性に関する研究計画 Climate Variability and Predictability http://www.clivar.org/ 世界気候研究計画 (WCRP) で実施された熱帯海洋全球大気研究計画 (TOGA) と世界海洋循環実験 (WOCE) の後継計画として1995年に開始された。世界海洋一大気一陸域システム、十年一百年規模の地球変動と予測、人為起源気候変動の三つのテーマを柱とし、地球規模の気候変動の実態把握と予測のための活動を行っている。 CLIVAR started in 1995 as a successive programme of TOGA (Tropical Ocean and Global Atmosphere) and WOCE (World Ocean Circulation Experiment) in WCRP (World Climate Research Programme). CLIVAR acts for assessment and prediction of global climate change, being composed of three streams of global ocean-atmosphere-land system, decadal-to-centennial global variability and predictability, and anthropogenic climate change. #### **GEOTRACES** 海洋の微量元素・同位体による生物地球化学研究 [日本語]http://www.jodc.go.jp/geotraces/index.j.htm [English] http://www.obs-vlfr.fr/ GEOTRACES/ 近年のクリーンサンプリング技術および高感度分析化学的手法を駆使して、海洋に極微量含まれる化学元素濃度とそれらの同位体分布を明らかにし、海洋の生物地球化学サイクルの詳細をグローバルスケールで解明しようとする研究計画。1970年代に米国を中心に実施されたGEOSECS (地球化学的大洋縦断研究)計画の第二フェーズに位置づけられる。2003年よりSCOR (海洋科学研究委員会)のサポートを受け、2005年にサイエンスプランが正式承認され、SCORの大型研究としてスタートした。 GEOTRACES, an international program in marine geochemistry, following the GEOSECS program in the 1970s, is one of the large-scale scientific program in SCOR since 2003. Its mission is to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean, and to elucidate response patterns of these distributions to changing environmental conditions. #### **GLOBEC** 全球海洋生態系動態研究計画 Global Ocean Ecosystem Dynamics http://www.globec.org/ GLOBECは1991年にSCORとIOCによって立ち上げられたIGBPのコアプロジェクトで、地球規模での気候変動が海洋生態系を構成する生物個体群の現存量、種多様性、生産性に与える影響に関する理解を得ることを目標としている。 GLOBEC is IGBP core project which was initiated by SCOR and the IOC of UNESCO in 1991, to understand how global change will affect the abundance, diversity and productivity of marine populations comprising a major component of oceanic ecosystems. #### GOOS 世界海洋観測システム Global Ocean Observing System http://www.ioc-goos.org/ 気候変動、海洋環境保全ほか、幅広い目的のため、世界の海洋観測システムを構築しようという計画。ユネスコ政府間海洋学委員会などが主導。政府間レベルでは1993年に開始された。 GOOS is an International initiative to establish global ocean observing system for a wide range of purposes including studies of global change, activities of marine environment protection and so on. It has been promoted by the Intergovernmental Oceanographic Commission of UNESCO and other related international organizations since 1993. #### **IGBP** 地球圈—生物圏国際共同研究計画 International Geosphere-Biosphere Programme http://www.igbp.net/ IGBPにおける海洋関係のプロジェクトにはMarine Biochemistry and Ecosystem Research (IMBER) とGlobal Ocean Ecosystem Dynamics (GLOBEC) の2つがあり、さらに海洋を取り巻く境界を扱うプロジェクトとしてSurface Ocean-Lower Atmosphere Study (SOLAS) と Land-Ocean Interactions in the Coastal Zone (LOICZ) がある。これらのプロジェクトに大気海洋研究所のスタッフは、国内レベルおよび国際レベルの両方で活発に活動している。 Ocean domain core projects of IGBP(International Geosphere-Biosphere Programme) Consist of Intergated Marine Biochemistry and Ecosystem Research(IMBER) and Global Ocean Ecosystem Dynamics(GLOBEC). In addition, two interface core projects, *i.e.*, Surface Ocean-Lower Atmosphere Study(SOLAS) and Land-Ocean Interactions in the Coastal Zone(LOICZ), are also close to our study. Staff of AORI have been actively involved in these projects at both domestic and international levels. #### **IMBER** 海洋生物地球化学・生態系統合研究 Integrated Marine Biogeochemistry and Ecosystem Research http://www.imber.info/ IMBERは、IGBPとSCORが共同で後援している国際的な分野複合的な活動で、海洋生物地球化学的循環と生態系との相互作用が、どのように地球の変化に影響を与え、またその変化からどのような影響を受けるのか、という点について理解を深めることを目的としている。 IMBER is a new IGBP-SCOR project focusing on ocean biogeochemical cycles and ecosystems. The IMBER vision is to provide a comprehensive understanding of, and accurate predictive capacity for, ocean responses to accelerating global change and the consequent effects on the Earth System and human society. #### InterRidge 国際中央海嶺研究計画 http://interridge.org/ 日本事務局 http://ofgs.aori.u-tokyo.ac.jp/intridgej/ #### **IODP** 統合国際深海掘削計画 Integrated Ocean Drilling Program http://www.iodp.org/ ### JSPS Asian CORE Program 日本学術振興会拠点大学交流事業 http://www.jsps.go.jp/j-acore/ #### **JST-MOST** 戦略的国際科学技術協力推進事業「日本 一中国 (MOST) 研究交流 (気候変動)」 三峡ダム貯水過程における領域気候効果 に関する日中研究交流 Japan Science and Technology Agency & the Ministry of Science and Technology of the People's Republic of China Strategic Japanese-Chinese Cooperative Program on "Climate Change" and Chinese-Japanese cooperative research on regional climate effects on the impoundment process of the Three Gorges Reservoir http://www.jst.go.jp/pr/info/info710/besshi2.html #### **PICES** 北太平洋海洋科学機関 North Pacific Marine Science Organization http://www.pices.int/ インターリッジは、中央海嶺に関係するさまざまな研究を国際的かつ学際的に推進していくための枠組み。中央海嶺研究に関する情報交換や人材交流を行い、国際的な航海計画や研究計画を推し進めている。 InterRidge is an international and interdisciplinary initiative concerned with all aspects of midocean ridges. It is designed to encourage scientific and logistical coordination, with particular focus on problems that cannot be addressed as efficiently by nations acting alone or in limited partnerships. 我が国が建造する世界最新鋭の掘削研究船「ちきゅう」や米国のライザーレス掘削船などを 用いて、新しい地球観を打ち立て、人類の未来や我が国の安全へ貢献しようとする国際共同研究。2003年10月に発足し、推進には我が国が中心的な役割を果たす。 Using the world's most advanced drilling vessel "CHIKYU" constructed in Japan and the US riserless drilling vessel, an international joint research expedition is being undertaken to create new theories about the Earth and to try to contribute to the future safety of Japan and humankind. This program established in October 2003, and Japan is fulfilling a central role in the promotion of this project. 本事業 (東南アジアにおける沿岸海洋学の研究教育ネットワーク構築) では、アジアの5ヶ国 (インドネシア、マレーシア、フィリピン、タイ、ベトナム) および日本国内の研究機関が共同して、東アジア・東南アジアの沿岸域で次の3つの研究課題を実施している。(1) 物質輸送に関する研究、(2) 生物多様性、(3) 有害化学物質による海洋汚染と生態学影響。 The project "Establishment of research and education network on coastal marine science in Southeast Asia" has been conducted with cooperation of universities and institutes from five Asian countries (Indonesia, Malaysia, Philippines, Thailand and Vietnam) and Japan on the following research items; (1) Water circulation and the process of material transport, (2) Biodiversity, and (3) Marine pollution and ecological impact in the East and the Southeast Asia. 本研究交流は、世界最大の水力発電所である三峡ダムが局所気候や極端天気現象に与える影響を調べることを目的とする。具体的には、中国側の長期間の現地観測データと、日本側の大気大循環モデルなどを用いて、三峡ダム領域気候実験を行うための領域気候モデルを開発し、三峡ダム領域の気候変化の機構を解析する。日中両国の研究交流を通じて相互補完的に取り組むことで、日本側の気候シミュレーション能力の向上を図るとともに、将来予想される気候変化に伴う三峡ダム領域での気候変化について数値的な予測情報を提供することが可能となる。 This project aims to gain knowledge about regional climate change over the TGR area by understanding the climate effect of the Three Gorges Reservoir (TGR), especially through feedback from precipitation, air temperature and wind. We intend to assess the influence of the TGR on extreme weather and climate events, especially on floods and drought, and to do simulations of the regional climate in in TGR region with consideration of global warming and enhancement of the ability to do research on regional climate change. We also aim to strengthen multilateral cooperation by opening up new opportunities for the export and transfer of environmental technology. 北太平洋海洋科学機関は、北部北太平洋とその隣接海における海洋科学研究を促進・調整することを目的として1992年に設立された政府間科学機関で、北大西洋のICESに相当する。現在の構成国は、カナダ、日本、中国、韓国、ロシア、米国の6カ国で、毎年秋に年次会議を開催する。 PICES is an intergovernmental scientific organization established in 1992 to promote and coordinate marine research in the northern North Pacific and adjacent seas. PICES is a Pacific equivalent of the North Atlantic ICES(International Council for the Exploration of the Seas). Its present members are Canada, Japan, People's Republic of China, Republic of Korea, the Russian Federation, and the United States of America. #### SOLAS 海洋・大気間の物質相互作用研究計画 Surface Ocean-Lower Atmosphere Study [日本語] http://solas.jp/ [English] http://www.uea.ac.uk/env/solas/ 海洋と大気の境界領域での物質循環を中心に化学・生物・物理分野の研究を展開し、気候変化との関係を解明するIGBPの新しいコアプロジェクトとして、2003年から立ち上げられた。 2006~2010年度には、我が国においても、SOLAS関係の大型研究が実施された。 SOLAS is aimed to achieve quantitative understanding of the key
biogeochemical-physical interactions and feedbacks between the ocean and atmosphere, and how this coupled system affects and is affected by climate and environmental change. from 2006 to 2010, the long-scale project related SOLAS activity were carried out in the North Pacific. #### UNEP/ABC 大気の褐色雲プロジェクト Atmospheric Brown Cloud Project http://www.rrcap.unep.org/abc/ #### **WCRP** 世界気候研究計画 World Climate Research Programme http://www.wmo.int/pages/prog/wcrp/wcrp-index.html #### **WESTPAC** 西太平洋海域共同調査 Programme of Research for the Western Pacific http://ioc.unesco.org/westpac/ 本プロジェクトは、社会の意思決定に必要な科学的根拠を提供するために、大気の褐色雲 (ABC) の科学とその影響のより良い理解を目指す。 The aim of the project is to better understand the science and the impacts of the Atmospheric Brown Cloud (ABC) in order to provide a scientific basis for informed decision making. 世界気候研究計画 (WCRP) は、地球システムの観測とモデリングおよび、政策にとって重要な気候状態の評価を通して、人間活動の気候影響の理解と気候予測を改善する。 The World Climate Research Programme (WCRP) improves climate predictions and our understanding of human influences on climate through observations and modeling of the Earth system and with policy-relevant assessments of climate conditions. 西太平洋諸国の海洋学の推進、人材育成を目的としたユネスコ政府間海洋学委員会 (IOC) のプログラム。1970年代初めに開始され、その運営委員会は1989年からはIOCのサブコミッションに格上げされた。 WESTPAC is a regional subprogram of IOC to promote oceanographic researches and capacity building in marine sciences in the Western Pacific Region. It was initiated in early 1970s and the steering committee for WESTPAC was upgraded to one of the Sub-Commission of IOC in 1989. #### 国際研究集会 **International Meetings** 2010年度中に東京大学大気海洋研究所が主催した主な国際集会 International Meetings hosted by AORI in FY2010 #### HADEEP 国際シンポジウム トレンチコネクション: 超深海環境国際シンポジウム HADEEP International Symposium Trench Connection: International Symposium on the Deepest Environment on Earth 2010.11.10-12 柏、日本 Kashiwa. Japan 西田 睦、徳山英一 NISHIDA, Mutsumi; TOKUYAMA, Hidekazu #### 第2回日韓微生物生態国際シンポジウム 2nd Japan; Korea International Symposium on Microbial Ecology 2010.11.26 つくば、日本 Tsukuba, Japan 木暮一啓、浜崎恒二 KOGURE, Kazuhiro; HAMASAKI, Koji # 海洋アライアンスイニシアチブ「国際海洋ネットワーク構築」ワークショップ・プログラム:「海洋学に関わる教育システムについて」 Seminar on Educational System on Ocean Science 2010.11.19 柏、日本 Kashiwa, Japan 木暮一啓 KOGURE, Kazuhiro #### JSPS ワークショップ 「東南アジアにおける動物プランクトンの多様性」 JSPS Workshop: Census of Marine Zooplankton (CMarZ) in SouthEast Asia 2010.7.8-16 ミヤグアゴ、フィリピン Miag-ago, Philippines 西田周平 NISHIDA, Shuhei #### 堀場国際コンファレンス 「西部太平洋域における海洋科学研究の新しい展開」 政府間海洋学委員会西部太平洋域 50 年間活動と日本学術振興会拠点大学事業による 「沿岸海洋学」の過去、現在、 そして未来 Horiba International Conference "New Direction of Ocean Research in the Western Pacific"-Past, Present and Future of UNESCO/IOC/WESTPAC Activity for 50 years and the JSPS Project "Coastal Marine Science"- 2010.10.26-29 柏、日本 Kashiwa, Japan 植松光夫、西田周平、道田豊 UEMATSU, Mitsuo; NISHIDA, Shuhei; MICHIDA, Yutaka ### 第5回合同アジアンダストと海洋生態系に関するワークショップ Joint 5th Workshop on Asian Dust and Ocean EcoSystem (ADOES) with Asian SOLAS/WESTPAC/METMOP/SALSA 2010.11.29-12.2 長崎、日本 Nagasaki, Japan 植松光夫 UEMATSU, Mitsuo #### 太平洋における海洋表層・大気下層間生物化学サイクルのリンケージ(AGU) Linkages in Biogeochemical Cycles Between the Surface Ocean and Lower Atmosphere Over the Pacific Ocean (AGU) 2010.12.15 サンフランシスコ、米国 San Fransisco, USA 植松光夫 UEMATSU, Mitsuo #### スマトラ - ジャワ弧の沈み込みプロセスとテクトニクスに関するワークショップ、東京 2011 Workshop on Subduction Process and Tectonics along the Sumatra-Java arc, Tokyo 2011 2011.3.10-11 柏、日本 Kashiwa. Japan 徳山英一 TOKUYAMA, Hidekazu #### 第1回非静力学モデル国際ワークショップ First International Workshop on Nonhydrostatic Numerical Models 2010.9.29-10.1 京都、日本 Kyoto, Japan 佐藤正樹(共催) SATOH, Masaki (Co-host) # 革新プログラム第4回国際ワークショップ (第3回モデリング・相互比較・影響評価 大規模気候変動予測国際ワークショップ共催) 3rd International Workshop on Global Change Projection: Modeling, Intercomparison, and Impact Assessment jointly with 4th International Workshop on KAKUSHIN Program 2011.3.9-11 つくば、日本 Tsukuba, Japan 木本昌秀、高薮 縁 KIMOTO, Masahide; TAKAYABU, Yukari #### 第 13 回最先端計算機施設における次世代気候変動および持続可能性モデル開発に関わる国際専門家会議 The 13th international specialist meeting on the next generation models of climate change and sustainability for advanced high performance computing facilities 2011.3.28-30 ホノルル、米国 Honolulu, USA 木本昌秀 KIMOTO, Masahide #### 大気物質同化に関する国際ワークショップ International workshop for atmospheric materials assimilation 2011.3.8-9 柏、日本 Kashiwa. Japan 中島映至 NAKAJIMA, Teruyuki #### 古気候モデリングに関する第3回 PMIP 国際会議 International Conference on Paleoclimate Modelling: PMIP3 workshop 2010 2010.12.5-10 京都、日本 Kyoto, Japan 阿部彩子 ABE, Ayako #### 国際ウナギシンポジウム 2010 International Symposium of EEL 2010 2010.6.24-25 千葉、日本 Chiba, Japan 塚本勝巳 TSUKAMOTO, Katsumi #### インターリッジジャパンシンポジウム―海底熱水系研究の最前線― InterRidge-J Symposium Frontier studies on hydrothermal activities 2010.11.5 柏、日本 Kashiwa. Japan 沖野郷子 OKINO, Kyoko # 国際共同研究 **International Research Projects** #### 東京大学とソウル大学の海洋地球物理学に関する共同研究 Collaborative Research on Marine Geophysics between University of Tokyo and Seoul National University 2010.9.22 朴 進午 Park Jin-Oh; Lee Sang-Mook (Seoul National University) #### 海洋微生物の光応答メカニズム Response mechanism of marine microorganisms to light 2010.4.1-2011.3.31 木暮一啓 KOGURE, Kazuhiro; 金尚珍 Kim Sang-Jin (韓国海洋研究所Korea Ocean Research & Development Institute) # 日本学術振興会・拠点大学交流事業「東アジア・東南アジア沿岸・辺縁海の物質輸送課程に関する研究」 JSPS Multilateral Cooperative Research Program: Coastal Marine Science: Studies on Coastal Oceanography in East and Southeast Asia 2010.4.1-2011.3.31 西田周平 NISHIDA, Shuhei; Suharsono (Research and Development Center for Oceanology LIPI); Charoen Nitithamyong (Chulalongkorn University); Mohd Ibrahim Seeni Mohd (Universiti Teknologi Malaysia); Miguel D. Fortes (University of the Philippines Diliman); Tran Duc Thanh (Institute of Marine Environment and Resources) # 北太平洋縁辺海から外洋における生態系システムの気候変化に 対する応答 Response of marine ecological system in the marginal seas to open ocean of the western North Pacific to climate change 2010.4.1-2011.3.31 植松光夫 UEMATSU, Mitsuo; GAO Huiwang (Ocean University of China) # 海洋の微量元素と同位体による生物地球化学的研究 (国際 GEOTRACES 計画) An International Study of Marine Biogeochemical Cycles of Trace Elements and their Isotopes (GEOTRACES Programme) 2010.4.1-2011.3.31 蒲生俊敬 GAMO, Toshitaka; Robert Angerson (Columbia University); Gideon Henderson (Oxford University) ### オホーツク海日露共同海洋調査 Research Expedition in the Okhotsk Sea 2010 2010.5.18-6.16 安田一郎 YASUDA, Ichiro; Yuri Volkov (Far Eastern Regional Hydrometeorological Research Institute, Russia) インド洋の海洋底地球物理学に関する調査研究をソウル大学と 共同で、韓国の総合海洋調査研究船を用いて実施。 Conduct a collaborative research between University of Tokyo and Seoul National University on marine geology and geophysics of the Indian Ocean using new research vessel of Korea. 海洋微生物の持つ光エネルギー捕集メカニズムについて、遺伝子 および生理的研究。 Genetic and physiological study on light-harvesting mechanisms of marine microorganisms. 海洋物理・化学・生物学を通して沿岸の富栄養化・環境破壊など の国際研究を行う。 International study on eutrophication and the environmental destruction etc. in coastal and marginal sea by physical chemical biological oceanography. 大陸から海洋へ供給される粒子の気候変化への役割と縁辺海における環境影響評価を西部北太平洋で行う。 Evaluation of role particulate matter transported from land to ocean on climate change and marine ecological system in marginal sea of the western North Pacific. GEOTRACES計画はグローバル海洋を対象に微量元素と同位体の分布を明らかにしそれらが関わる生物地球化学的諸過程の解明を目指している。この計画の一環として白鳳丸KH-10-2航海を実施し日本海・北西太平洋の観測と試料採取を実施した。 GEOTRACES is an international programme which aims to improve the understanding of biogeochemical cycles and large-scale distribution of trace elements and their isotopes all major ocean basins. As part of the programme we conducted the Hakuho Maru KH-10-2 cruise in the Japan Sea and northwestern Pacific to take seawater and sediment samples. オホーツク海におけるロシア経済水域内・領海内の物質循環・乱流観測を中心とした航海を行った。 Hydrographic research survey in the Okhotsk Sea. #### 気候・環境研究に関するアジア研究教育拠点の形成 An Asian core formation of climate and environment research and education 2010.4.1-2011.3.31 高橋正明TAKAHASHI, Masaaki; KANG In-Sik (Seoul National University); SUI Chung-Hsiung (Taiwan National Central University); SHI Guang-Yu (IAP/CAS) 大学院生の交換留学、研究者の招聘等を通じて、気候・環境研究 に関する教育拠点を形成する。 Form Asian core of climate and environment research and education through exchange of graduate students and invitation of researchers. # 三峡ダム貯水過程における領域気候効果に関する日中研究 交流 Chinese-Japanese cooperative research on regional climate effect of the impoundment process of Three Gorges Reservoir 2010.3.1-2013.3.31 佐藤正樹 SATOH, Masaki; Xianyan Chen (National Climate Center) 世界最大の水力発電ダムである中国・三峡ダム(TGR)領域の気候変化についての知識を得ることを目的に、TGRの気候への影響、特に降水・気温・風について調べ、また洪水や渇水など極端気象現象を観測ネットワークデータおよび気候予測シミュレーション手法を用いて評価する。温暖化条件でのTGR領域気候の数値シミュレーションを行い、領域気候変化の予測能力の向上をめざす。上記の研究を通じて、日中間の相互の環境技術の向上のための新しい機会を開拓し、研究交流を強化する。。 1) gain in knowledge for the regional climate change over TGR area, 2) understanding the climate effect of the TGR especially for the feedback on precipitation air temperature wind, 3) assessment of the influence of TGR on extreme weather and climate events especially on flood and drought, 4) simulation of the regional climate in TGR region under the background of global warming, 5) enhancement of the research ability on regional climate change, 6) strengthening multilateral cooperation, 7) opening up new opportunities for the export and transfer of environmental technology. ## UNEP/ABC (大気の褐色雲) アジアプロジェクト **UNEP/ABC (Atmospheric Brown Cloud) Asia Project** 2010- 中島映至 NAKAJIMA, Teruyuki; V. Ramanathan (Scripps Institution of Oceanography, University of California, San Diego, US); Guang-Yu Shi (Institute of Atmospheric Physics, Beijing, China); Yuanhang Zhang (College of Environmental Sciences and Engineering, Peking University, China); Soon-Chang Yoon (School of Earth and Environmental Sciences, Seoul National University, Korea); Achuthan Jayaraman (Space and Atmospheric Sciences Division, Physical Research Laboratory, India) ## アジアの大気の褐色雲のモニタリングと評価。 Monitoring and assessing the atmospheric brown cloud in Asia. # EarthCARE 人工衛星プロジェクトによる科学的成果物の作成 Development of science products from the EarthCARE satellite 2006- 中島映至 NAKAJIMA, Teruyuki; Anthony Illingworth (Department of Meteorology University of Reading, UK)
EarthCARE衛星データを利用した科学的成果物の作成。 Development of science products from data of the EarthCARE satellite. # 過去から将来にかけての氷床の大融解と気候変化に関する 研究 CrYoshere and CLimate interactions over the last and future deglaciation of the Earth (CYCLE) 2010.4.1-2011.3.31 阿部彩子 ABE, Ayako; RAMSTELN Gilles (National Center for Scientific Research) 気候システムの変化の仕組みを調べるための道具として、いくつかの階層の気候モデルをもちい、また過去の地球環境の変化を示す気候データは文献収集および整理のほか、最近数十万年に関しては氷床コアの解析を協力して行った。 We investigated mechanisms of climate changes using a hierarchy of climate models, reviewed past environmental changes based on literature survey, and analyzed ice core records for changes over the last hundreds of thousand years. # 現在進行中の米国西域の渇水は人間活動由来の気候変動に 起因しているのか? Is the current drought affecting the Western US unique from earlier droughts of the 20th Century and therefore attributable to anthropogenic climate change? 2010-2013 芳村 圭 YOSHIMURA, Kei; Lowell Stott (University of Southern California); Masao Kanamitsu (Scripps Institution of Oceanography UCSD) # オーストラリアの新規モデル動物ゾウギンザメを用いる軟骨 魚類研究の推進 The elephant fish in Australia as a novel model for understanding cartilaginous fish biology 2010.4.1-2012.3.31 兵藤 晋 HYODO, Susumu; John A. Donald (Deakin University) #### 脊椎動物の水生適応に関する行動生理研究 Behavioural physiology of aquatic vertebrates 2009.4.1-2011.3.11 佐藤克文 SATO, Katsufumi; Patrick J. O. Miller (University of St Andrews) 北米南西部の今世紀10年にわたって続く干ばつが人為起源の温暖化による結果なのか、同位体比情報を用いて読み解く。 The isotopic information is used to investigate whether the current decadal drought over the Western US is due to the human-induced global warming. ゲノムプロジェクトによる分子基盤を利用でき、繁殖期の成魚ならびに受精卵を使用できるゾウギンザメを用いることで、軟骨魚類の適応生理学、繁殖生理学、発生学研究を推進する。 Promotion of research on adaptation, reproduction, and development of cartilaginous fish using the elephant fish, for which genome information and developing embryos are available, as a model. 動物搭載型記録計を用いたバイオロギング研究によって、魚類・鳥類・哺乳類といった水生動物を対象とした行動生理学を進める。対象動物ごとに設定される具体的研究目的は異なるが、最終的に目指しているのは幅広い動物群における比較研究であり、脊椎動物の水圏環境適応についての総合考察を行うことである。 The goal of this project was to accelerate the exchange of expertise and research techniques for the study of behavior, biomechanics, and physiology of aquatic animals. The focus of the work was to share field techniques and develop data-collection systems including camera, sound, and speed-recording tags for cetaceans, and a novel automatic blood-sampling device for seals. Obtained data was used in view of comparative study to understand divergence and convergence of aquatic animals in adaptation to each environment. # 共同利用研究活動 | COOPERATIVE RESEARCH ACTIVITIES # 2010年度における利用実績 **User Records in FY2010** # 大型計算機共同利用:共同研究課題ごとの参加人数 The Number of Participants on Cooperative Research Activities of Collaborative Use of Computing Facility | 大気海洋研究所
担当教員
AORI
participants | 研究課題名称
Title of Research | 研究区分
Type of Research | 代表研究機関
Institute of Representation | 参加人数
Number of
participants | |---|--|---|---|-----------------------------------| | 木本 昌秀
KIMOTO, M. | 湖沼·湿地のダイナミックスを考慮した
陸面過程モデルの開発と検証
Development and verification of a land surface model
including lakes and wetland dynamics | 特定研究
Specific Themed
Cooperative Research | 東京大学生産技術研究所
Institute of Industrial Science,
the University of Tokyo | 4 | | 高橋 正明
TAKAHASHI, M. | 金星大気の数値シミュレーション
Numerical simulation of Venus atmosphere | 特定研究
Specific Themed
Cooperative Research | 九州大学応用力学研究所
Research Institute for Applied
Mechanics, Kyushu University | 1 | | 羽角 博康
HASUMI, H. | 海洋深層における乱流拡散の
パラメタリゼーション
Parameterization for turbulent diffusivity in the deep
ocean | 特定研究
Specific Themed
Cooperative Research | 東京大学大学院
理学系研究科
School of Science,
The University of Tokyo | 8 | | 羽角 博康
HASUMI, H. | AORI (気候システム系) /気象研の世界海洋大循環モデルのパフォーマンスの相互比較
Intercomparison of World Ocean GCM performance
between CCSR and MRI | 特定研究 Specific Themed Cooperative Research | 気象庁気象研究所 Meteorological Research Institute, Japan Meteorological Agency | 3 | | 木本 昌秀
KIMOTO, M. | アジアモンスーンの数値シミュレーションのための物理過程の高度化とデータ同化手法の開発
Development of physical processes and data
assimilation for numerical simulations of Asian monsoon | 特定研究 Specific Themed Cooperative Research | 気象庁予報部数値予報課 Section of Numerical Weather Prediction, Japan Meteorological Agency | 9 | | 佐藤 正樹
SATOH, M. | 全球雲解像モデルを用いた4次元同化実験
4D-var assimilation experiments using a global cloud-
resolving model | 特定研究
Specific Themed
Cooperative Research | 筑波大学計算科学研究センター/
筑波大学生命環境科学研究科
Center for Computational
Sience, Graduate School of Life
and Environmental Sciences,
University of Tsukuba | 2 | | 高橋 正明
TAKAHASHI, M. | 季節サイクルの中でみた東アジア前線帯付近の
水循環と変動に関する数値的研究
Numerical study on water circulations and variations
around the front in East Assia seasonal cycle | 一般研究
Cooperative Research | 岡山大学大学院
教育学研究科
Graduate School of Education,
Okayama University | 3 | | 羽角 博康
HASUMI, H. | 海洋における水塊形成・輸送・生態系に関する
数値的研究
Numerical study on water mass formation, transportation,
and ecosystem in the ocean | 一般研究
Cooperative
Research | 東京大学大気海洋研究所 Atmosphere and Ocean Research Institute, The University of Tokyo | 7 | | 中島 映至
NAKAJIMA, T. | 静止気象衛星の可視データを用いた東アジア地域の雲気候の解析
Analysis of cloud climatology in the East Asian region
using GMS visible data. | 一般研究
Cooperative
Research | 気象庁気象衛星センター
Meteorological Satellite Center,
Japan Meteorological Agency | 5 | | 木本 昌秀
KIMOTO, M. | 大気海洋循環系における
気候変動過程のモデル研究
A modeling study of climate variability in coupled
atmosphere and ocean circulation systems | 一般研究
Cooperative
Research | 東京大学大学院
理学系研究科
School of Science,
the University of Tokyo | 8 | | 木本 昌秀
KIMOTO, M. | 異常気象とその予測可能性に関する研究
A study on mechanisms and predictability of anomalous
weather | 一般研究
Cooperative
Research | 京都大学防災研究所
Disaster Prevention Research
Institute, Kyoto University | 1 | | 木本 昌秀
KIMOTO, M. | 季節内から数十年スケールの
気候変動の数値的研究
A numerical simulation study of climate variability on
intraseasonal to decadal time scales | 一般研究
Cooperative
Research | 北海道大学大学院
理学研究院
Faculty of Science,
Hokkaido University | 9 | | 木本 昌秀
KIMOTO, M. | 「アジアの雨量計による日降水量グリットデータによるMIROCモデル降水量の再現と変動性の評価」
Evaluation of reproducibility and variability of precipitation simulated by the climate model, MIROC, using a daily precipitation data set based on an Asian rain gauge network | 一般研究
Cooperative
Research | 総合地球環境研究所
Research Institute for Humanity
and Nature | 3 | | 阿部 彩子
ABE, A. | 汎地球惑星の水循環と気候の検討
Examination on the Water cycle and climate of
Terrestrial planets | 一般研究
Cooperative
Research | 東京大学大学院
理学系研究科
School of Science,
the University of Tokyo | 2 | | 大気海洋研究所
担当教員
AORI
participants | 研究課題名称
Title of Research | 研究区分
Type of Research | 代表研究機関
Institute of Representation | 参加人数
Number of
participants | |---|---|---------------------------------|---|-----------------------------------| | 渡部 雅浩
WATANABE, M. | 数値モデルを用いた東アジア大気循環の
変動力学の探究
Numerical study on the atmospheric circulation over
East Asia | 一般研究
Cooperative
Research | 東京大学大学院理学系研究/
ハワイ大学国際太平洋研究センター
School of Science, the University
of Tokyo /International Pacific
Research Center, University of
Hawaii | 3 | | 羽角 博康
HASUMI, H. | 海洋・海氷モデルを用いた海洋・海氷変動研究
Numerical study on water mass formation, transportation,
and ecosystem in the ocean | 一般研究
Cooperative
Research | 北海道大学大学院
理学研究院
Faculty of Science,
Hokkaido University | 6 | | 羽角 博康
HASUMI, H. | 北太平洋におけるCFC-11,12の
海洋内循環再現実験
Simulation of CFC-11 and 12 transport in the North
Pacific | 一般研究
Cooperative
Research | 北海道大学低温科学研究所
Institute of Low Temperature
Science, Hokkaido University | 5 | | 中島 映至
NAKAJIMA, T. | 放射スキームの高速・高精度化
Improvement of the computational efficiency and
accuracy of a radiation code. | 一般研究
Cooperative
Research | 東京海洋大学海洋工学部
Faculty of Marine Technology,
Tokyo University of Marine
Science and Technology | 1 | ### 白鳳丸乗船者数 The Number of Users of the R/V Hakuho Maru | ac ch | | | 所外 Outside | | | 五似老人具 | |------------|-----------------------|-----------------------|-----------------------------|---------------|------------------|----------------| | 所内
AORI | 国公立大学
Public Univ. | 私立大学
Private Univ. | 国公立研究機関
Public Institute | その他
Others | 所外合計
Subtotal | 乗船者合計
Total | | 53 | 28 | 4 | 19 | 5 | 56 | 109 | #### 淡青丸乗船者数 The Number of Users of the R/V Tansei Maru | 元·다 | | | 所外 Outside | | | 五似老会計 | |------------|-----------------------|-----------------------|-----------------------------|---------------|------------------|----------------| | 所内
AORI | 国公立大学
Public Univ. | 私立大学
Private Univ. | 国公立研究機関
Public Institute | その他
Others | 所外合計
Subtotal | 乗船者合計
Total | | 81 | 139 | 9 | 36 | 4 | 188 | 269 | # 柏外来研究員制度利用者数 The Number of Users of Visiting Scientist System for the Cooperative Research in Kashiwa | ac ch | | | 所外 Outside | | | 케미코스틱 | |------------|-----------------------|-----------------------|-----------------------------|---------------|------------------|----------------| | 所内
AORI | 国公立大学
Public Univ. |
私立大学
Private Univ. | 国公立研究機関
Public Institute | その他
Others | 所外合計
Subtotal | 利用者合計
Total | | 0 | 19 | 6 | 10 | 4 | 39 | 39 | ### 国際沿岸海洋研究センター外来研究員制度利用者数 (公募内) The Number of Users of the International Coastal Research Center (not based on the application system) | 元 中 | | | 所外 Outside | | | 利用者合計 | |------------|-----------------------|-----------------------|-----------------------------|---------------|------------------|-------| | 所内
AORI | 国公立大学
Public Univ. | 私立大学
Private Univ. | 国公立研究機関
Public Institute | その他
Others | 所外合計
Subtotal | Total | | | | 震災の | ため記録なし | No data | | | # 国際沿岸海洋研究センター外来研究員制度利用者数 (公募外) The Number of Users of the International Coastal Research Center (not based on the Application system) | ac ch | | | 所外 Outside | | | 케미코스틱 | |------------|-----------------------|-----------------------|-----------------------------|---------------|------------------|----------------| | 所内
AORI | 国公立大学
Public Univ. | 私立大学
Private Univ. | 国公立研究機関
Public Institute | その他
Others | 所外合計
Subtotal | 利用者合計
Total | | 0 | 10 | 0 | 0 | 0 | 10 | 10 | # 研究集会(柏):代表者所属機関別件数 The Number of Organizers of Research Meeting in Kashiwa | 元中 | | | 所外 Outside | | | 件数合計 | 소ㅠ 1 粉스틱 | |------------|-----------------------|-----------------------------------|------------|---|---|------|------------------------------| | 所内
AORI | 国公立大学
Public Univ. | 国公立大学 私立大学 国公立研究機関 その他 所外合計 | | | | | 参加人数合計
Total Participants | | 7 | 4 | 0 | 2 | 0 | 6 | 13 | 1210 | ### 研究集会(国際沿岸海洋研究センター):代表者所属機関別件数 The Number of Organizers of Research Meeting at International Coastal Research Center | 5C ct | | | 所外 Outside | | | /t- *t- ^=1 | 소hu 1 #b스크 | |------------|-----------------------|-----------------------|-----------------------------|---------------|------------------|---------------|------------------------------| | 所内
AORI | 国公立大学
Public Univ. | 私立大学
Private Univ. | 国公立研究機関
Public Institute | その他
Others | 所外合計
Subtotal | 件数合計
Total | 参加人数合計
Total Participants | | 1 | 1 | 1 | 1 | 0 | 3 | 4 | 160 | ※所内在籍の大学院学生はすべて所内人数に含まれる ※教職員・学生・研究生の区別不要 ※独立行政法人は「国公立研究機関」に含める ※気象研究所は「国公立研究機関」に含める ※財団法人は「その他」に含める ※外国の研究機関は「その他」に含める ※私立中・高校は「その他」に含める ※海上保安庁は「その他」に含める ※民間はこの表には含めない ※The number of user for all students of AORI is included in the category of "AORI" # 淡青丸—研究航海航跡図 (2010) Track Chart of R/V Tansei Maru in FY2010 # 白鳳丸—研究航海航跡図(2010) Track Chart of R/V Hakuho Maru in FY2010 # 2010年度に実施された淡青丸研究航海 Research Cruises of the R/V Tansei Maru in FY2010 | 航海次数 | 期間 (日数) | 海域 | 研究題目 | 主席研究員 | |-----------|-------------------------|---|---|--| | Cruise No | Period (Days) | Research Area | Title of Research | Chief Researcher | | KT-10-4 | 2010.4.6-
4.15 (10) | 宮城沖
off Miyagi | 海底測地・地震観測による
日本海溝の非地震性すべりの解明
Seismological and geodetic study of aseismic slip along | 東北大学大学院理学研究科
伊藤 喜宏
ITOH, Yoshihiro | | WT 10 5 | 0010 410 | | subduction plate boundary of the Japan Trench | Graduate School of Science,
Tohoku University | | KT-10-5 | 2010.4.18-
4.22 (5) | 噴火湾、下北半島沖 | 噴火湾及び下北半島沖における
古海洋学的研究 | 愛媛大学上級研究員センター加三千宣 | | | | Funka Bay and off Shimokita Peninsula | Paleoceanographic studies in Funka Bay and off
Shimokita Peninsula | KUWAE, Michinobu
Senior Research Fellow Center,
Ehime University | | KT-10-6 | 2010.4.25-
5.8 (14) | 日本海 | 日本海における有孔虫類の遺伝的多様性の調査
および佐渡海盆周辺海域への物質供給増加の影
響調査 | 独立行政法人海洋研究開発機構
土屋 正史 | | | | Japan Sea | Observation of genetic diversity of foraminifers in Japan
Sea/observation of effect on increased material supply
into Sado Basin and surrounding seas | TSUCHIYA, Masashi
Japan Agency for Marine-Earth
Science and Technology | | KT-10-7 | 2010.5.11-
5.17 (7) | 日本海南部 | 日本海南部における現生有殻動植物プランクトン
の空間分布と短期的海洋環境変遷の解明 | 独立行政法人海洋研究開発機構
木元 克典 | | | | Southern Japan Sea | Spatial distributions and paleocceanographic changes of modern shell-bearing marine plankton in the Southern Japan Sea | KIMOTO, Katsunori
Japan Agency for Marine-Earth
Science and Technology | | KT-10-8 | 2010.5.20-
5.29 (10) | 日本海、オホーツク海 | 日本海、オホーツク海、太平洋間の深海底生生物
の遺伝的交流に関する系統地理学的研究 | 東京大学大気海洋研究所
小島 茂明 | | | | Japan Sea and
Sea of Okhotsk | Phylogeography of deep-sea benthic organisms in the Japan Sea | KOJIMA, Shigeaki
AORI, The University of Tokyo | | KT-10-9 | 2010.6.1-
6.10 (10) | 三陸沖 | 日本東方海域における深層流の時間変動と物質輸送の研究 | 東京大学大気海洋研究所藤尾伸三 | | | | off Sanriku | Studies on current variability and material transport in the deep ocean east of Japan | FUJIO, Shinzou
AORI, The University of Tokyo | | KT-10-10 | 2010.6.13-
6.21 (9) | 関東南方海域 | 地殻熱流量測定による関東南方
沈み込み境界震源域の温度構造の研究 | 東京大学地震研究所
山野 誠 | | | | Southern area off Kanto | Study of thermal structure of the seismogenic zone along subduction plate interface to the south of Kanto through heat flow measurements | YAMANO, Makoto
Earthquake Research Institute,
The University of Tokyo | | KT-10-11 | 2010.6.24-
6.28 (5) | 相模湾 | 相模湾における中層漂泳群集とマリンスノーの動態に関する研究 (CMarZ 航海) | 東京大学大気海洋研究所
西田 周平 | | | | Sagami Bay | Studies on dynamics of mesopelagic community and marine snow in Sagami Bay (CMarZ Cruise) | NISHIDA, Shuhei
AORI, The University of Tokyo | | KT-10-12 | 2010.7.1-
7.5 (5) | 東京湾、相模湾、
伊豆黒潮周辺海域 | 海洋表層微生物群集の
光環境応答メカニズムの解析 | 東京大学大気海洋研究所
木暮 一啓 | | | | Tokyo Bay,Sagami Bay,
and ,Kuroshio area
around Izu | Light-utilization mechanism of microbes in the surface layer | KOGURE, Kazuhiro
AORI, The University of Tokyo | | KT-10-13 | 2010.7.8-
7.19 (12) | 相模湾、駿河湾、伊豆黒潮周辺海域 | 相模湾・伊豆黒潮周辺海域における生元素動態に
関する研究および海洋有機物の化学的性質と動
態に関する研究 | 東京大学大気海洋研究所
小川 浩史 | | | | Sagami Bay, Suruga
Bay and Kuroshio area
around Izu | Study on dynamics of biogeochemical cycles in Sagami Bay, Suruga Bay and Kuroshio area around Izu, and on chemical characteristics and dynamics of organic matter in the ocean. | OGAWA, Hiroshi
AORI, The University of Tokyo | | KT-10-14 | 2010.7.24-
8.2 (10) | 三陸海岸沖合海域 | 三陸海岸沿岸域から沖合域にかけて回遊するウミガメ類亜成体および雄の採餌生態 | 東京大学大気海洋研究所
佐藤 克文 | | | | around Sanriku area | Foraging ecology of loggerhead turtles migrating around Sanriku area | SATO, Katsufumi
AORI, The University of Tokyo | | KT-10-15 | 2010.8.5-
8.10 (6) | 駿河湾 | 駿河湾における海洋循環と
海洋生物の分布に関する研究 | 東京大学大気海洋研究所
田中 潔 | | | | Suruga Bay | Water circulation and distribution of living things in
Suruga Bay, Japan | TANAKA, Kiyoshi
AORI, The University of Tokyo | | KT-10-16 | 2010.8.13-
8.18 (6) | 熊野灘、土佐湾 | 深海性底生生物の進化古生物学的研究 | 名古屋大学博物館
大路 樹生 | | | | Kumano-Nada,Tosa Bay | Paleobiological studies on the deep-sea benthic organisms | OJI, Tatsuo
The Nagoya University Museum | | KT-10-17 | 2010.8.21-
8.24 (4) | 鹿児島湾 | 浅海熱水系における海底堆積物を通じた
ヘリウム・フラックスの研究 | 東京大学大気海洋研究所
佐野 有司 | | | | Kagoshima Bay | Helium flux through the sediment in a marine hydrothermal system | SANO, Yuji
AORI, The University of Tokyo | | 航海次数
Cruise No | 期間 (日数)
Period (Days) | 海 域
Research Area | 研究題目
Title of Research | 主席研究員
Chief Researcher | |-------------------|---------------------------|--|--|--| | KT-10-18 | 2010.8.26-
8.30 (5) | 鬼界カルデラ周辺域
Around the Kikai Cal-
dera | 鬼界カルデラのカルデラ底における熱水活動と
海底堆積作用の解明
Hydrothermal activity and sedimentary sequence in
ocean floor of the Kikai Caldera | 九州大学理学研究院
清川 昌一
KIYOKAWA, Shoichi
Graduate School of Sciences,
Kyushu University | | KT-10-19 | 2010.9.3-
9.14 (12) | 東シナ海、
フィリピン海
East China Sea and,
Philippine Sea | 貧栄養海域の生物生産における「島効果」の評価
Evaluation of island mass effect on biological production in the oligotrophic ocean | 東京大学大学院農学生命科学研究科
古谷 研
FURUYA, Ken
Graduate School of Agricultural and | | KT-10-20 | 2010.9.16-
9.22 (7) | 鹿児島湾 Kagoshima Bay | 複数の AUV による鹿児島湾若尊カルデラの
時空間的な環境マッピング手法の研究
Temporal-spatial mapping of Wakamiko Caldera, | Life Science, The University of Tokyo
東京大学生産技術研究所
巻 俊宏
MAKI.Toshihiro | | | | кадомінна вау | Kagoshima bay by multiple AUVs | Institute of Industrial Science, The University of Tokyo | | KT-10-21 | 2010.9.25-
10.3 (9) | 東シナ海・
西部北太平洋
East China Sea and
Western North Pacific | 北太平洋縁辺海から外洋における生態系の
気候変化に対する応答
Response of marine ecological system in the marginal
seas to open ocean of the western North Pacific to
climate change | 東京大学大気海洋研究所
津田 敦
TSUDA, Atsushi
AORI, The University of Tokyo | | KT-10-22 | 2010.10.6-
10.12 (7) | 東シナ海、黒潮域 | 東シナ海における夏季と冬季の流れ藻の分布に
関する研究および外洋性ウミアメンボ属3種の分
布と棲み分けに関する研究 | 東京大学大気海洋研究所
小松 輝久 | | | | East China Sea and Kuroshio area | Studies on distributions of drifting seaweeds in East China Sea in summer and winter, and distribution and habitat segregation of three species of oceanic <i>Halobates</i> | KOMATSU, Teruhisa
AORI, The University of Tokyo | | KT-10-23 | 2010.10.15-
10.21 (7) | 南西諸島海域 | 琉球海溝周辺に生息する小型底生生物群集構造
と海底堆積物組成の空間変異に関する研究
堆積層に覆われた海底熱水系における熱水プルー
ムの化学組成と微生物群集の関係に関する研究 | 熊本大学沿岸域環境科学教育研究
センター
嶋永 元裕 | | | | Nansei Islands area | Studies on distribution of meiofauna around the Ryukyu Trench, and relationship between chemistry and microbial community in the hydrothermal plume derived from the sediment-hosted hydrothermal systems. | SHIMANAGA, Motohire
Center for Marine Environment
Studies, Kumamoto University | | KT-10-24 | 2010.10.23-
10.28 (6) | 南西諸島海域
Nansei Islands
area | 熱水活動域における微生物ループと
動物プランクトン捕食連鎖の構造解析
Interlinkage of microbial loop and zooplankton food
chain in hydrothermal vent area | 独立行政法人海洋研究開発機構
山本 啓之
YAMAMOTO, Hiroyuki
Japan Agency for Marine-Earth | | KT-10-25 | 2010.10.31- | 九州南方海域 | マンガンクラストの観察・採取 | Science and Technology 高知大学理学部 | | | 11.7 (8) | Southern area | および化学汚染物質の調査
Observation/Sampling of Manganese Crusts, and Survey | 臼井 朗
USUI, Akira | | KT-10-26 | 2010.11.10- | off Kyuushu
三陸沖 | of Chemical Pollutants
海底測地・地震観測による日本海溝の非地震性す | Faculty of Science, Kochi University 東北大学大学院理学研究科 | | | 11.19 (10) | off Sanriku | べりの解明 Seismological and geodetic study of aseismic slip along | 日野 亮太
HINO, Ryota | | | | on carring | subduction plate boundary of the Japan Trench | Graduate School of Science and Faculty of Science, Tohoku University | | KT-10-27 | 2010.11.22-
12.1 (10) | 日本海東部 | 日本海中深層における鉛直拡散係数の計測と水
平循環の推定 | 九州大学応用力学研究所
松野 健 | | | | Eastern Japan Sea | Measurement of vertical diffusivity in the deep water of
the Japan Sea and estimation of the horizontal deep
circulation | MATSUNO, Takeshi
Researchi Institute for Applied
Mechanics, Kyushu Univetsity | | KT-10-28 | 2010.12.4-
12.8 (5) | 日本海 | 深海底ベントスの共生者・寄生者群集の解明 | 京都大学大学院地球環境学堂
加藤 真 | | | | Japan Sea | Exploration of symbiont/parasite communities of deep-
sea benthos | KATO, Makoto
Graduate School of Global Environ-
mental Studies, Kyoto University | | KT-10-29 | 2010.12.11-
12.22 (12) | 房総沖、伊勢湾沖 | 新規開発のポップアップタグによるウナギ産卵回
遊行動の解明 | 東京大学大気海洋研究所
塚本 勝巳 | | | | off Boso and off Ise Bay | Clarification of spawning migration of Japanese eel using new pop-up tag | TSUKAMOTO, Katsumi
AORI, the University of Tokyo | | KT-11-1 | 2011.2.18-
2.24 (7) | 東シナ海 | 東シナ海における夏季と冬季の流れ藻の分布 | 東京大学大気海洋研究所
小松 輝久 | | | | East China Sea | Studies on distributions of drifting seaweeds in East China Sea in summer and winter | KOMATSU, Teruhisa
AORI, the University of Tokyo | | 航海次数
Cruise No | 期間 (日数)
Period (Days) | 海 域
Research Area | 研究題目
Title of Research | 主席研究員
Chief Researcher | |-------------------|--------------------------|-----------------------|--|---| | KT-11-2 | 2011.2.26-
3.2 (5) | 鹿児島湾
Kagoshima Bay | 複数の AUV による鹿児島湾若尊カルデラの
時空間的な環境マッピング手法の研究
Temporal-spatial mapping of Wakamiko Caldera,
Kagoshima bay by multiple AUVs | 東京大学生産技術研究所
巻 俊宏
MAKI, Toshihiro
Institute of Industrial Science,
The University of Tokyo | | KT-11-3 | 2011.3.8-
3.12 (5) | 相模湾
Sagami Bay | 相模湾における中層漂泳群集と
マリンスノーの動態に関する研究
Studies on dynamics of mesopelagic communities and
marine snow in Sagami Bay | 東京大学大気海洋研究所
西田 周平
NISHIDA, Shuhei
AORI, The University of Tokyo | # 2010年度に実施された白鳳丸研究航海 Research Cruises of the R/V Hakuho Maru in FY2010 | 航海次数
Cruise No | 期間 (日数)
Period (Days) | 海 域
Research Area | 研究題目
Title of Research | 主席研究員
Chief Researcher | |-------------------|------------------------------|---|--|--| | KH-10-1 | 2010.5.18-
6.4(18) | 西部太平洋 | 熱帯・亜熱帯太平洋におけるエアロゾル、微量金属、海洋生物の生物地球化学的相互作用の研究および海洋における漂流プラスチック由来の化学物質汚染の調査・研究 | | | | | Western Pacific ocean | Biogeochemical studies on aerosol, trace metals and oceanic organisms in the tropical and subtropical Pacific and Investigation for Chemical Contamination of Ocean Derived from Marine Debris Plastics | TSUDA, Atsushi
AORI, The University of Tokyo | | KH-10-2 | 2010.6.11-
7.23(43) | 西部太平洋 | 日本近海における微量元素・同位体分布の
生物地球化学的縦断観測
(極東・アジア GEOTRACES 計画) | 富山大学大学院理工学研究部
張 勁
東京大学大気海洋研究所
蒲生 俊敬 | | | | Western Pacific ocean | Marine biogeochemical studies and behavior of trace
elements and isotopes in the East Asian Marginal Seas
(-ASIAN GEOTRACES) | JZHANG, Jing
Graduate School of Science and
Enginiiring for Science, University of
Toyama
GAMO, Toshitaka
AORI, The University of Tokyo | | KH-10-3 | 2010.7.29-
8.25(28) | 相模・房総・南海トラフ海域 | IODP 地震発生帯掘削孔周辺での
地球科学総合観測 | 東京大学大気海洋研究所 芦 寿一郎 | | | | Sagami, Boso, Nankai
Trough aera | Comprehensive Survey of Earth Sciences around the IODP Seismogenic Zone Drilling Sites | ASHI, Juichiro
AORI, The University of Tokyo | | KH-10-4 | 2010.9.1-
10.15(43) | 中部太平洋、マニヒキ海台 | 太平洋におけるウミアメンボの生態、
海洋有殻プランクトンの多様性、海洋変動
および海台の成因に関する研究 | 東京大学大気海洋研究所
中村 恭之
高知大学教育研究部
原田 哲夫 | | | | Central Pacific Ocean
and Manihiki Plateau | Studies on behavior of halobates, biodiversity and biomass of marine tested plankton, ocean variation, and origin of oceanic plateau in the Pacific Ocean | NAKAMURA, Yasuyuki
AORI, The University of Tokyo
HARADA, Tetsuo
Research and Education Faculty,
Kochi University | | KH-10-5 | 2010.10.21-
11.19(30) | スマトラ北西沖、
インド洋 | 巨大津波の発生様式と発生履歴を探る-スマトラ
北西沖外縁隆起帯の総合的海域調査
外洋棲ウミアメンボの分布及び環境応答性に果た
す海象・気象動態の役割についての生理・生態学
的研究 | | | | | off Northwestern
Sumatra and Indian
Ocean | Geological and geophysical offshore survey in outer-arc-high off Northwestern Sumatra - search for generation mechanism and history of giant tsunami -Distribution, heat-tolerance and super cooling point of the oceanic sea skaters of Halobates. (Heteroptera: Gerridae) inhabiting tropical area of western Pacific Ocean and oceanic dynamics | HIRATA, Kenji
Meteorological Research Institute | | KH-10-6 | 2010.11.23-
12.13(21) | インド洋 | インド洋海底熱水系の総合調査
東京大学大気海洋研究所
沖野 郷子 | | | | | Indian Ocean | Integrated exploration of hydrothermal vents in the Indian Ocean | OKINO, Kyoko
AORI, The University of Tokyo | | KH-10-7 | 2010.12.17-
2011.1.17(32) | インド洋、
南極海インド洋区 | 複合分野による南極海インド洋区の総合調査
国立極地研究所
野木 義史 | | | | | Indian Ocean and Indian
Sector of the Antarctic
Ocean | Multidisciplinary study in the Indian Sector of the Antarctic Ocean | NOGI, Yoshihumi
National Institute of Polar Research | | KH-11-1 | 2011.1.21-
2.9(20) | オーストラリア西岸域、
ティモール海 | オーストラリア北西ボナパート湾における
東京大学大気海洋研究所
海水準・古海洋研究
横山 祐典 | | | | | western area of
Australia and Timor Sea | Sea level and Paleoceanographic studies at Bonaparte Gulf, northwestern Australia | YOKOYAMA, Yusuke
AORI, The University of Tokyo | | KH-11-2 | 2011.2.11-
2.18(8) | 茨城沖 | 茨城沖に沈みこんだ海山の構造と
周辺の詳細な地震活動 | 東京大学地震研究所
望月 公廣 | | | | off Ibaraki | Structure of the subducted seamount off Ibaraki and detailed seismic activity in its surrounding region | MOCHIZUKI, Kimihiro
Earthquake Research Institute,The
University of Tokyo | | KH-11-3 | 2011.2.25-
3.11(15) | 黒潮続流域 | 黒潮続流域における浮魚仔稚魚輸送環境 | 東京大学大気海洋研究所
安田 一郎 | | Leg 1 | | Kuroshio extension | Studies on the transport environment for larvae and juveniles in the Kuroshio, the Kuroshio Extension and Izu-ridge: biological productivity through vertical mixing processes | YASUDA, Ichiro
AORI, The University of Tokyo | # 2010年度に開催された研究集会(柏地区) Research Meetings in FY2010 (Kashiwa Campus) | 開催期間
Period | 研究集会名称
Title of Meeting | 参加人数
Number of
Participants | コンビーナー
Convenor | |---------------------|--|-----------------------------------|--| | 2010.
6.24-25 | ウナギ: その生物学と資源保全
Advances in Reproductive Ecology, Physiology and Artifical Production of the
Japanese eel | 176 | 東京大学 大気海洋研究所
塚本 勝巳
TSUKAMOTO, K.
AORI, the University of Tokyo | | 2010.
10.1 | 第46回海中海底工学フォーラム
46th Underwater Technology Forum | 211 | 東京大学 生産技術研究所
浦 環
URA, T.
Institute of Industrial Science, the University
of Tokyo | | 2010.
10.19-20 | 水生生物の性的二型 適応と進化
Sexual Dimorphism in Aquatic Organisms, Adaptation and Evolution | 58 | 東京大学 大気海洋研究所
猿渡 敏郎
SARUWATARI, T.
AORI, the University of Tokyo | | 2010.
11.1-2 | 南海トラフ海溝型巨大地震の新しい描像
一大局的構造と海底面変動の理解ー
New Perspective of Great Subduction Zone Earthquakes from the Super Deep
Drilling -Framework and Seafloor Activity of the Nankai Seismigenic Zone- | 83 | 東京大学 大気海洋研究所
芦 寿一郎
ASHI, J.
AORI, the University of Tokyo | | 2010.
11.4-5 | 海底拡大系の総合研究
ーInterRidge Japan研究集会ー
Inter-Ridge Japan Annual Symposium | 92 | 東京大学 大気海洋研究所
沖野 郷子
OKINO, K.
AORI, the University of Tokyo | | 2010.
11.30-12.1 | 潮汐混合とオホーツク海・ベーリング海の物理・化学・生物過程:白鳳丸KH09-4航海・おしょろ丸・クロモフ2006/2007シンセシス Tidal mixing and physical,chemical and biological processes in the Okhotsk Sea and Bering Sea:Synthesis of the cruises of Hakuho-maru KH09-4,Oshoromaru and Khromov 2006/2007 | 67 | 東京大学 大気海洋研究所
安田 一郎
YASUDA, I.
AORI, the University of Tokyo | | 2010.
12.1 | 漁業情報を用いた水産資源の評価と管理
Fisheries Stock Assessment and Management using Fisheries Information | 54 | 東京大学 大気海洋研究所
平松 一彦
HIRAMATSU, K.
AORI, the University of Tokyo | | 2010.
12.9-10 | 地球流体における流れの変動性と持続性の力学
Dynamics of Variability and Persistency of Geophysical Fluids | 52 | 東京学芸大学
松田 佳久
MATSUDA, Y.
Tokyo Gakugei University | | 2011.
1.6-7 | 2010年度古海洋シンポジウム
2010 Paleoceanography Symposium | 164 | (独)海洋研究開発機構
北里 洋
KITAZATO, H.
JAMSTEC
| | 2011.
1.11-12 | 日本列島周辺域に分布するテフラのデータベース整備にむけて Preparation and design of tephra database in and around Japan | 67 | 首都大学東京 大学院都市環境科学研究科
鈴木 毅彦
SUZUKI, T.
Graduate School of Urban Environmental
Science, Tokyo Metropolitan University | | 2011.
2.7 | 中西部太平洋におけるカツオの生態と資源
Biology and Stock status of Skipjack tuna in the Western Central Pacific | 69 | 茨城大学 地域総合研究所
二平 章
NIHIRA, A.
Institute of Regional Studies, Ibaraki University | | 2011.
2.10 | バイオミネラリゼーションと石灰化
- 遺伝子から地球環境まで-
Biomineralization and Calcification from gene to global environment | 46 | (独)産業技術総合研究所
鈴木 淳
SUZUKI, A.
AIST | | 2011.
2.11 | 地球生命科学の夢ロードマップ
一古環境研究から未来環境を予測するー
Future work for the research on biogeoscience -from paleo-environmental study
to future perspective of global environment | 71 | 東京大学 大気海洋研究所
井上 麻夕里
INOUE, M.
AORI, the University of Tokyo | # 2010年度に開催された研究集会 (国際沿岸海洋研究センター) Research Meetings in FY2010 (International Coastal Research Center) | 開催期間
Period | 研 究 集 会 名 称
Title of Meeting | 参加人数
Number of
Participants | コンビーナー
Convenor | |------------------|---|-----------------------------------|--| | 2010.
8.3-4 | 北太平洋とその周辺海域における循環と水塊過程
Circulation and water masses in the North Pacific Ocean and the Adjacent
Seas | 50 | 東京大学 大気海洋研究所
岡 英太郎
OKA, E.
AORI, the University of Tokyo | | 2010.
8.4-5 | 近年の北日本を中心とする異常気象に関わる大気海洋過程
Atmosphere and ocean processes associated with recent extreme weather
events around the northern part of Japan | 58 | 新潟大学 教育研究院自然科学系
本田 明治
HONDA, A.
Niigata University, Academic Assembly,
Institute of Science and Technology | | 2010.
8.24-25 | 水圏の生産力解析 Productivity estimation and related studies in aquatic environment | 28 | 北里大学 海洋生命科学部
林崎 健一
HAYASHIZAKI, K.
Kitasato University, School of Marine
Biosciences | | 2010.
9.14-15 | 日本気象学会THORPEX研究連絡会第4回研究集会「太平洋・アジア域に影響を与える気象」
The 4th Workshop of THORPEX Interest Group of the Meteorological Society of Japan "High-impact Weather in Pacific and Asia" | 24 | (独)海洋研究開発機構
榎本 剛
ENOMOTO, T.
JAMSTEC | # 教育活動 | EDUCATIONAL ACTIVITIES # 2010年度修士論文 Master's Thesis in FY2010 | | 研究科
Graduate School | 専攻
Department /Division | 学生名
Student | 論文タイトル
Title of thesis | 主たる指導教員
Supervisor | |---|---|---|-----------------------------|--|-------------------------| | | | 地球惑星科学
Earth and
Planetary
Science | 夫馬 康仁
FUMA,Yasuhito | 移動性高気圧の後面で持続した
停滞性レインバンドに関する事例解析
A case study on a stationary rain band on the western side of a mi-
gratory anticyclone | 新野 宏
NIINO, H. | | | | | 橋本 真喜子
HASHIMOTO, Makiko | 天空輝度観測から導出されるエアロゾル光学特性に関する研究
A study of the arosol optical properties as retrieved from sky radiance measurements | 中島 映至
NAKAJIMA, T. | | | | | 伊藤 淳二
ITO, Junji | Polar Low の発生と発達に対する上層渦の影響について
Influence of a vortex aloft on the generation and development of a
polar low | 伊賀 啓太
IGA, K. | | | | | 金澤 周平
KANAZAWA, Shuhei | 地表面到達太陽放射およびエアロゾル放射特性における
エアロゾル全球輸送モデルと観測間の比較研究
A comparative study of surface solar radiation and aerosols derived
from a global aerosol transport model and observation | 中島 映至
NAKAJIMA, T. | | | | | 川久保 友太
KAWAKUBO, Yuta | 喜界島サンゴ骨格を用いた過去 432 年間の海洋環境復元
A 432-year-long paleoceanographic record in Porites coral in Kikai
Island, Southern Japan | 横山 祐典
YOKOYAMA, Y. | | | | | 北澤 達哉
KITAZAWA, Tatsuya | 数千年スケールの気候変動による氷床への影響とその役割
Climatic influence in millennial time scale upon ice sheet mass
change | 阿部 彩子
ABE-OUCHI, A. | | | | | 小山 佑介
KOYAMA, Yusuke | 大循環モデルを用いた中生代〜新生代の気候モデリング
Lessons from modelling the climate of Mesozoic and Cenozoic using
General Circulation Model MIROC | 阿部 彩子
ABE-OUCHI, A. | | | | | 宮城 和明
MIYAGI, Kazuaki | 中国山地東部に豪雨をもたらした降水系に関する研究
A study on a precipitation system that caused heavy rainfall in the
eastern part of the Chugoku mountain range | 新野 宏
NIINO, H. | | 東京大学大学院
Graduate School
of the University
of Tokyo | 理学系
Science | | 村山 裕紀
MURAYAMA, Yuki | TRMM 降雨レーダーデータを用いた
extreme rain の地域特性の解析
Analysis on regional characteristics of extreme rain utilizing the
TRMM Precipitation Radar data | 高數 縁
TAKAYABU, Y. N. | | | | | 大泉 二郎
OIZUMI, Jiro | 熱帯太平洋十年規模変動の起源に関する数値的研究
A numerical study on the origin of the tropical Pacific decadal cli-
mate variability | 渡部 雅浩
WATANABE, M. | | | | | 高橋 理美
TAKAHASHI, Satomi | 宇宙線生成核種を用いた南極ドームふじ氷床コア中の
Blake 古地磁気エクスカーションの検出
Cosmogenic radionuclides reveal the Blake geomagnetic excursion | 横山 祐典
YOKOYAMA, Y. | | | | | | in Dome Fuji ice core | | | | | | 武田 一孝
TAKEDA, Kazutaka | 台風の水平スケールに影響する要因に関する数値的研究
A numerical study on factors affecting the horizontal scale of tropi-
cal cyclones | 新野 宏
NIINO, H. | | | | | 田中 雄大
TANAKA, Takahiro | ベーリング海陸棚斜面域の高生物生産を支える
水塊構造・混合に関する観測的研究
Observational study on water mass structure and mixing to sustain | 安田 一郎
YASUDA, I. | | | | | | summertime biological productivity along the shelf edge of the south eastern Bering Sea | | | | | | 山崎 隆宏
YAMAZAKI, Takahiro | 最終退氷期における西南極氷床ロス棚氷後退史復元と
微量試料を用いた C-14 年代測定法の開発 | 横山 祐典
YOKOYAMA, Y. | | | | | | Melting history of Ross ice shelf in Western Antarctica and develop-
ment of small scale 14C analysis using Accelerator Mass Spectrometry | | | | | | 安岡 亮
YASUOKA, Ryo | 樹木年輪中の ¹⁴ C を利用した太陽活動の高解像度における
復元及び気候との関連性について
Reconstructions of solar activity during AD257-365 from high reso-
lution tree ling ¹⁴ C | 横山 祐典
YOKOYAMA, Y. | | | | 生物科学
Biological
Science | 佐久間 啓
SAKUMA, Kei | 耳石微量元素を用いた深海性底魚類の生活史推定
The life history of deep-sea demersal fishes inferred from elemental composition of otoliths | 小島 茂明
KOJIMA, S. | | | | | 田口 佳奈子
TAGUCHI, Kanako | 海水に適応したウナギの食道における脱塩機構
Desalting mechanism in the esophagus of seawater-adopted eels | 竹井 祥郎
TAKEI, Y. | | | 農学生命科学
Agricultural and
Life Sciences | 水圈生物科学
Aquatic
Bioscience | 小暮 潔央
KOGURE, Yukihisa | 採餌旅行中のヨーロッパヒメウが行う
羽ばたき飛翔に関する研究
Studies on flight behavior of European shag during foraging trip | 佐藤 克文
SATO, K. | | | | | 町野 翔一
MACHINO, Shoichi | オオミズナギドリの婚外受精とヒナの
性比の実態把握に関する研究
Extrapair-paternity and female-biased sex ratio of offspring of
streaked shearwaters Calonectris leucomelas | 佐藤 克文
SATO, K. | | | | | 中村 乙水
NAKAMURA, Itsumi | 行動と食性からみたマンボウ (<i>Mola mola</i>) の採餌生態
Foraging ecology of ocean sunfish (<i>Mola mola</i>) | 佐藤 克文
SATO, K. | | | 研究科
Graduate School | 専攻 Department / Division | 学生名
Student | 論文タイトル
Title of thesis | 主たる指導教員
Supervisor | |---|---|-----------------------------------|--|---|---------------------------| | | | 水圏生物科学
Aquatic Biosci-
ence | 中村慎太郎
NAKAMURA, Shintaro | アワビ類の行動と繁殖に係わる生態学的研究
Ecological study on the behavior and reproduction of abalone species | 河村 知彦
KAWAMURA, T. | | | 農学生命科学
Agricultural and
Life Sciences | | 大土 直哉
OTSUCHI, Naoya | 相模湾長井沿岸の小型紅藻群落に生息する甲殻類の生態学的研究
Ecological study on the crustaceans inhabiting small red algal turfs
in Sagami Bay | 河村 知彦
KAWAMURA, T. | | | | | 塩崎 麻由
SHIOZAKI, Mayu | 潮流路変動と関連したニホンウナギの浜名湖への
来遊機構に関する研究
Migration of the Japanese glass eel into Lake Hamana related to
variation of the Kuroshio path | 木村 伸吾
KIMURA, S. | | | | | 青木 良徳
AOKI, Yoshinori | アーカイバルタグを用いたキハダ (<i>Thunnus albacares</i>) の
鉛直遊泳行動に関する研究
A study on the vertical migration of immature yellowfin tuna <i>Thunnus albacares</i> using archival tags | 木村 伸吾
KIMURA, S. | | | | | 藤井 堯典
FUJII, Takanori | アミノ酸窒素安定同位体比を用いた造礁サンゴの窒素源の解明
Determination of nitrogen sources for scleractinian corals by com-
pound-specific nitrogen isotope rations of amino acids | 小川 浩史
OGAWA, H. | | | | | 畠 由佳
HATA, Yuka | 自然状態での小型鯨類スナメリの鳴音特性と浮上行動:
定点での受動的音響観察と目視観察の併用から
Vocalization characteristics and surfacing behavior of free-ranging
finless porpoises evaluated by passive acoustic monitoring together
with visual observation | 白木原 國雄
SHIRAKIHARA, K. | | | | | 板倉 光
ITAKURA, Hikaru | 人為的環境改変に伴うニホンウナギ漁獲量の変動特性
Fluctuations in the Japanese eel catch in relation to habitat destructions | 木村 伸吾
KIMURA, S. | | | | | 小池 佳寬
KOIKE, Yoshihiro | 統合的沿岸域管理のためのリモートセンシングによる
マッピングに関する研究: 宮古湾周辺を例にして
Studies on mapping with remote sensing for integrated coastal area
management: A case of Miyako Bay area | 小松 輝久
KOMATSU, T. | | | | | 前田 玲奈
MAEDA, Reina | 深海底生魚類における嗅球の比較形態学的研究
Volumetric and morphological analyses of olfaction in deep-sea fish | 小島 茂明
KOJIMA, S. | | | 新領域創成科学
Frontier Sciences | | 宮村 真人
MIYAMURA, Masato | アフリカにおけるバイオマスバーニングの焼失割合の推定
Estimation of burning ratio of African biomass burning | 今須 良一
IMASU, R. | | 東京大学大学院
Graduate School
of the University | | | ムハンマド ナゼイル
ムハンマド
MOHAMMAD, Natheer
Mohammad | マイクロデータロガーを用いた
キンメダイ (Beryx splendens) の行動に関する研究
Studies on the behavior of a deep-water fish, the Splendid Alfonsino
(Beryx splendens) using micro data loggers | 小松
輝久
KOMATSU, T. | | of Tokyo | | | 長田 暁子
NAGATA, Akiko | 頭蓋骨の形態的特徴に基づく北海道産出マグロ属魚類化石の同定
Identification of genus Thunnus fossil from Hokkaido on the basis of
morphological characteristics of cranium | 木村 伸吾
KIMURA, S. | | | | | 小嶋 孝徳
OJIMA, Takanori | 前弧海盆の横ずれを伴う活断層の構造とその発達:
東部南海トラフ遠州断層系の例
Structure and evolution of active faults with strike-slip in a forearc basin: An example of Enshu fault system in the eastern Nankai Trough | 芦 寿一郎
ASHI, J. | | | | | 岡田 暁矩
OKADA, Tokinori | ライダーデータによる大気エアロゾルの同化に関する研究
A study for the aerosol assimilation by Lidar data | 中島 映至
NAKAJIMA, T. | | | | | 坂本 絢香
SAKAMOTO, Ayaka | 陸域からの汚濁負荷流入が東京湾の高次生態系に与える影響
Impacts of eutrophication on high trophic levels of ecosystem in Tokyo Bay | 白木原 國雄
SHIRAKIHARA, K. | | | | | 桜井 紀旭
SAKURAI, Noriaki | 掘削柱状試料と掘削同時検層データの統合による熊野前弧海
盆の貯留砂層の検出
Detection of Sand Reservoir by Core-Log Integration in the Kumano
Forearc Basin | 芦 寿一郎
ASHI, J. | | | | | 徐 美恵
SEO, Mi Hye | 沖縄トラフ熱水噴出域の生物多様性保全に関する研究: ゴエモンコシオリエビを指標として
A study for preserving biodiversity in hydrothermal vent fields in Okinawa Trough: with a focus on Shinkaia crosnieri | 小島 茂明
KOJIMA, S. | | | | | 詫間 峻一
TAKUMA, Shunichi | 三陸沿岸に来遊するアカウミガメの採餌生態に関する研究
Foraging ecology of loggerhead turtles migrating to Sanriku coastal area | 佐藤 克文
SATO, K. | | | | | 魚里 怜那
UOZATO, Rena | クロマグロ水温環境履歴の解明に向けた耳石 δ^{18} 0 の有効性に関する研究 Validity of δ^{18} 0 in otoliths of bluefin tuna as an indicator for ambient environment | 木村 伸吾
KIMURA, S. | | | | | 渡口 響子
WATARIGUCHI, Kyoko | 加速度データロガーを用いた飼育下における
アカエイ <i>Dasyatis akajei</i> の行動分類
Classification of behaviors of the captive stingray, <i>Dasyatis akajei</i> ,
using acceleration data-loggers | 小松 輝久
KOMATSU, T. | | | 工学系
Engineering | 社会基盤学
Civil Engineering | 小島 啓太郎
KOJIMA, Keitaro | サンゴ記録と同位体大循環モデルを用いた
表層海水同位体比の変動メカニズムの解明
A study on stable water isotope in surface seawater by isotope
incorporated-GCM and coral proxy records | 芳村 圭
YOSHIMURA, K. | # 2010年度博士論文 PhD Thesis in FY2010 | | 研究科
Graduate School | 専攻
Department /Division | 学生名
Student | 論文タイトル
Title of thesis | 主たる指導教員
Supervisor | |---|---|---|---|---|------------------------| | | | 地球惑星科学
Earth and
Planetary
Science | 福田 悟
FUKUDA, Satoru | 近紫外領域の波長を利用した
大気エアロゾルのリモートセンシング手法の研究
A study of atmospheric aerosol remote sensing with use of near ultraviolet wavelengths | 中島 映至
NAKAJIMA, T. | | | | | 池田 恒平
IKEDA, Kouhei | 新しい放射伝達パラメタリゼーションを用いた大気大循環モデルによる金星大気スーパーローテーションの研究Development of radiative transfer model for Venus atmosphere and | 高橋 正明
TAKAHASHI, M. | | | | | 西川悠
NISHIKAWA, Haruka | simulation of superrotation using a general circulation model マイワシ資源量変動に対する海洋環境要因 Studies on the environmental impacts on long-term variation in | 安田 一郎
YASUDA, I. | | | | | 佐藤 太一
SATO, Taichi | abundance of Japanese sardine (Sardinops melanostictus) 地球物理観測およびモデリングに基づく南西インド洋海嶺 東経 35-40 度の断層活動とメルト供給量に関する研究 Faulting and melt supply at the ultra-slow spreading Southwest Indian ridge 35-40E, based on geophysical mapping and modeling | 沖野 郷子
OKINO, K. | | | | | 清木 達也
SEIKI, Tatsuya | 非静力学モデルにおける2モーメント法雲微物理モデルの開発と雲の光学特性に関する研究
Development of a two-moment bulk cloud microphysics scheme for a non-hydrostatic atmospheric model and its application to study the cloud optical properties. | 中島 映至
NAKAJIMA, T. | | | | | 城谷 和代
SHIROYA, Kazuyo | 岩石中に生成される宇宙線生成核種を用いた南米アタカマ砂
漠の乾燥化に関する研究
A study on aridification of the Atacama Desert, South America using
in-situ terrestrial cosmogenic nuclides | 横山 祐典
YOKOYAMA, Y. | | | | | 浦川 昇吾
URAKAWA, Shogo | 全球熱塩循環駆動における南大洋の役割に関する
エネルギー収支解析
Energy budget analysis on the role of the Southern Ocean in driving
the global thermohaline circulation | 羽角 博康
HASUMI, H. | | 東京大学大学院
Graduate School
of the University
of Tokyo | | 生物科学
Biological Science | 渡邊 太朗
WATANABE, Taro | ウナギにおける硫酸イオン調節機構に関する生理学的研究:
腎臓における調節を中心として
Physiological studies on sulfate regulation in the eel: with special reference to renal regulation | 竹井 祥郎
TAKEI, Y. | | | 農学生命科学
Agricultural and
Life Sciences | 水圏生物科学
Aquatic
Bioscience | ズンル クワァン
DUNG, Le Quang | ベトナムにおける熱帯ウナギの微量金属蓄積に関する研究
Studies on the accumulation of trace metals in tropical anguillid eels
from Vietnam | 大竹 二雄
OTAKE, T. | | | | | 福田 野歩人
FUKUDA, Nobuto | 浜名湖水系におけるニホンウナギの
接岸遡河生態に関する研究
Inshoe and upsream migration of the Japanese eel in Hamana Lake
system | 塚本 勝巳
TSUKAMOTO, K. | | | | | 海部 健三
KAIFU, Kenzo | 岡山県児島湾旭川水系におけるニホンウナギの資源生態学的研究
Fisheries ecology of Japanese eels <i>Anguilla japonica</i> in the Kojima
Bay-Asahi River system, Japan | 塚本 勝巳
TSUKAMOTO, K. | | | | | 須藤 竜介
SUDO, Ryusuke | ニホンウナギの産卵回遊の開始機構に関する
生理生態学的研究
The initiation mechanisms of spawning migration of Japanese eel,
Anguilla japonica | 塚本 勝巳
TSUKAMOTO, K. | | | 新領域創成科学
Frontier Sciences | | ブアニエ エチエヌ
BOISNIER Etienne | 人工魚礁による消失自然ハビタットの
効果的代替の可能性について
Can marine artificial reefs effectively replace lost natural habitats? | 小松 輝久
KOMATSU, T. | | | | | フェルダウス
モハマトユスフ
FERDAUS, Mohamat Yusuf | マレーシア沿岸域におけるレイシガイ類 (<i>Thais</i> spp.) の
有機スズ蓄積とインポセックスについて
Assessment of organotin contamination and imposex incidence
in tropical gastropods (<i>Thais</i> spp.) collected along the Malaysian
coastal areas | 大竹 二雄
OTAKE, T. | | | | | トゥイ オンマー
HTWAY, Ohnmar | ミャンマーにおけるモンスーンオンセット期の
気候システムに関する研究
A study of climate over Myanmar during the transition season | 高橋 正明
TAKAHASHI, M. | | | | | 井上 誠
INOUE, Makoto | to the summer monsoon アジアモンスーン域における成層圏対流圏結合 Stratosphere-troposphere coupling over the Asian monsoon region | 高橋 正明
TAKAHASHI, M. | # 予算 | BUDGET # 2010年度予算額 **Budget in FY2010** #### 総額 **Total Amount** ※小数点以下第2位を省略しています Round a number to one decimal place. # 研究業績 | PUBLICATION LIST # **CONTENTS** | 2010 | Climate Science | 90 | |------|----------------------------|----| | | Physical Oceanography | 92 | | | Chemical Oceanography | 93 | | | Ocean Floor Geoscience | 94 | | | Marine Ecosystems Dynamics | 95 | | | Marine Bioscience | 96 | | | Living Marine Resources | 99 | | | | | 101 # 研究業績 | PUBLICATION LIST 2010 #### Climate Science - Bellenger H., Takayabu Y.N., Ushiyama T. and Yoneyama K. (2010): Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO. *Monthly Weather Review*, **138**, 2426-2433. - Blatter H., Greve R. and Abe-Ouchi A. (2010): A short history of the thermomechanical theory and modelling of glaciers and ice sheets. *Journal of Glaciology*, **56**, 1087-1094. - Calov R., Greve R., Abe-Ouchi A., Bueler E., Huybrechts P., Johnson J.V., Pattyn F., Pollard D., Ritz C., Saito F. and Tarasov L. (2010): Results from the Ice-Sheet Model Intercomparison Project-Heinrich Event INtercOmparison (ISMIP HEINO). *Journal of Glaciology*, **56**, 371-383. - Chikamoto Y., Tanimoto Y., Mukougawa H. and Kimoto M. (2010): Subtropical Pacific SST variability related to the local Hadley circulation during the premature stage of ENSO. *Journal of the Meteorological Society of Japan*, **88**, 183-202. - Choi I.-J., Iguchi T., Kim S.-W., Yoon S.-C. and Nakajima T. (2010): Simulation of the aerosol effect on the microphysical properties of shallow stratocumulus clouds over East Asia using a bin-based meso-scale cloud model. *Atmospheric Chemistry and Physics Discussions*, 10, 23449-23495. - Elsaesser G.S., Kummerow C.D., L'Ecuyer T.S., Takayabu Y.N. and Shige S. (2010): Observed self-similarity of precipitation regimes over the tropical oceans. *Journal of Climate*, **23**, 2686-2698. - Emanuel K., Oouchi K., Satoh M., Tomita H. and Yamada Y. (2010): Comparison of explicitly simulated and downscaled tropical cyclone activity in a high-resolution global climate model. *Journal of Advances in Modeling Earth Systems*, 2, Art. #9. - Fudeyasu H., Wang Y., Satoh M., Nasuno T., Miura H. and Yanase W. (2010): Multiscale interactions in the lifecycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part I: Large-scale and storm-scale evolutions. *Monthly Weather Review*, 138, 4285-4304. - Fudeyasu H., Wang Y., Satoh M., Nasuno T., Miura H. and Yanase W. (2010): Multiscale interactions in the lifecycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part II: System-scale and mesoscale processes. *Monthly Weather Review*, 138, 4305-4327. - Hasumi H., Tatebe H., Kawasaki T., Kurogi M. and Sakamoto T.T. (2010): Progress of North Pacific modeling over the past decade. *Deep-Sea Research Part II*, 57, 1188-1200. - Imasu R. (2010): Satellite Measurement of Greenhouse Gases with Fourier Transform Spectrometer (FTS). *Japanese Journal of Optics*, **39**, 25-30. (今須良一(2010): フーリエ変換型赤外分光器による衛星からの温室効果ガス計測, 日本光学会(応用物理学会)「光学」, **39**, 25-30.) - Imasu R., Hayashi Y., Inagoya A., Saitoh N. and Shiomi K. (2010): Retrieval of minor constituents from thermal infrared spectra observed by GOSAT TANSO-FTS sensor. *SPIE*, **7857**, 785708. - Inoue T., Satoh M., Hagihara Y., Miura H. and Schmetz J. (2010): Comparison of high-level clouds represented in a global cloud system resolving model with CALIPSO/CloudSat and geostationary satellite observations. *Journal of Geophysical Research*, 115, D00H14. - Kanamitsu M., Yoshimura K., Yhang Y.-B. and Hong S.-Y. (2010): Errors of interannual variability and trend in dynamical downscaling of Reanalysis. *Journal of Geophysical Research Atmosphere*,
115, D17115. - Kawasaki T. and Hasumi H. (2010): Role of localized mixing around the Kuril Straits in the Pacific thermohaline circulation. *Journal of Geophysical Research*, **115**, C11002. - Kawatani Y., Sato K., Dunkerton T.J., Watanabe S., Miyahara S. and Takahashi M. (2010): The roles of equatorial trapped waves and internal inertia-gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. *Journal of the Atmospheric Sciences*, 67, 963-980. - Kawatani Y., Sato K., Dunkerton T.J., Watanabe S., Miyahara S. and Takahashi M. (2010): The roles of equatorial trapped waves and internal inertia-gravity waves in driving the quasi-biennial oscillation. Part II: Three-dimensional distribution of wave forcing. *Journal of the Atmospheric Sciences*, 67, 981-997. - Kim W.-M., Jhun J.-G., Ha K.-J. and Kimoto M. (2010): Decadal changes in climatological intraseasonal fluctuation of subseasonal evolution of summer precipitation over the Korean Peninsula in the mid-1990s. Advances in Atmospheric Sciences, 28, 591-600. - Kimoto M. and Ishii M. (2010): Near-term climate prediction experiment: toward predicting decadal climate variability. *Kaiyo Monthly*, **42**, 271-282 (木本昌秀, 石井正好 (2010): 近未来気候予測実験―十年規模気候変動の予測に向けて―. 月刊海洋, - Kodama C., Mochizuki Y., Hasegawa S., Iwasaki T. and Watanabe M. (2010): Negative correlation between the interannual variability of the stationary and transient wave energy in the Northern Hemisphere. *SOLA*. **6**. 37-40. - Koseki S. and Watanabe M. (2010): Atmospheric boundary layer response to the meso-scale SST anomalies in the Kuroshio extension. *Journal of Climate*, 23, 2492-2507. - Koyama H. and Watanabe M. (2010): Reducing forecast errors due to model imperfections using ensemble Kalman filtering. *Monthly Weather Review*, **138**, 3316-3332. - Kubokawa H., Fujiwara M., Nasuno T. and Satoh M. (2010): Analysis of the tropical tropopause layer using the Nonhydrostatic ICosahedral Atmospheric Model (NICAM): Aqua-planet experiments. *Journal of Geophysical Research*, **115**, D08102. - Kurahashi-Nakamura T., Abe-Ouchi A. and Yamanaka Y. (2010): Effects of physical changes in the ocean on the atmospheric pCO₂: glacial-interglacial cycles. *Climate Dynamics*, **35**, 713-719. - Kusahara K., Hasumi H. and Tamura T. (2010): Modeling sea ice production and dense shelf water formation at coastal polynyas around East Antarctica. *Journal of Geophysical Research*, 115, C10006. - Lü J.-M., Kim S.-J., Abe-Ouchi A., Yu Y. and Ohgaito R. (2010): Arctic Oscillation during the mid-Holocene and last glacial maximum from PMIP2 coupled model simulation. *Journal of Climate*, **23**, 3792-3813. - Matsumura Y. and Hasumi H. (2010): Modeling ice shelf water overflow and bottom water formation in the southern Weddell Sea. *Journal of Geophysical Research*, **115**, C10033. - Miyazaki K., Watanabe S., Kawatani Y., Sato K., Tomikawa Y. and Takahashi M. (2010): Transport and mixing in the extratropical tropopause region in a high vertical resolution GCM. Part II: Relative importance of large-scale and small-scale dynamics. *Journal of the Atmospheric Sciences*, 67, 1315-1336. - Miyazaki K., Watanabe S., Kawatani Y., Tomikawa Y., Takahashi M. and Sato K. (2010): Transport and mixing in the extratropical tropopause region in a high vertical resolution GCM. Part I: Potential vorticity and heat budget analysis. *Journal of the Atmospheric Sciences*, 67, 1293-1314. - Mochizuki T., Ishii M., Kimoto M., Chikamoto Y., Watanabe M., Nozawa T., Sakamoto T.T., Shiogama H., Awaji T., Sugiura N., Toyoda T., Yasunaka S., Tatebe H. and Mori M. (2010): Pacific Decadal Oscillation hindcasts relevant to near-term climate prediction. *Proceedings of the National Academy of Sciences of the USA*, 107, 1833-1837. - Murphy J., Kattsov V., Keenlyside N., Kimoto M., Meehl G., Mehta V., Pohlmann H., Scaife A. and Smith D. (2010): Towards prediction of decadal climate variability and change. *Procedia Environmental Sciences*, 1, 287-304. - Oka A. and Abe-Ouchi A. (2010): Simulation of the thermohaline circulation at the Last Glacial Maximum. *Kaiyo monthly*, **42**, 180-184. (岡 顕・阿部彩子 (2010): 氷期における熱塩循環のモデリング. 月刊海洋, **42**, 180-184.) - Oka A. and Obata H. (2010): Study on vertical profiles of rare earth elements by using an ocean general circulation model. *Kaiyo monthly*, **42**, 31-38. (岡 顕・小畑 元 (2010): 海洋大循環モデルによる希土類元素鉛直濃度分布の再現. 月刊海洋, **42**, 31-38.) - Okazaki Y., Timmermann A., Menviel L., Harada N., Abe-Ouchi A., Chikamoto M.O., Mouchet A. and Asahi H. (2010): Deepwater formation in the North Pacific during the Last Glacial Termination. *Science*, **329**, 200-204. - Renold M., Raible C.C., Yoshimori M. and Stocker T.F. (2010): Simulated resumption of the North Atlantic meridional overturning circulation: Slow basin-wide advection and abrupt local convection. *Quaternary Science Reviews*, **29**, 101-112. - Saito F. and Abe-Ouchi A. (2010): Modelled response of the volume and thickness of the Antarctic ice sheet to the advance of the grounded area. *Annals of Glaciology*, 51(55), 41-48. - Sasajima Y., Hasumi H. and Nakamura T. (2010): A sensitivity study on the Dense Shelf Water formation in the Okhotsk Sea. *Journal of Geophysical Research*, 115, C11007. - Sato N., Yoneyama K., Takayabu Y.N., Shirooka R. and Yoshizaki M. (2010): Variability of the oceanic surface and subsurface layers in the warm pool associated with the atmospheric northward-propagating intraseasonal variability. *Deep Sea Research II*, 57, 1201-1211. - Satoh M., Inoue T. and Miura H. (2010): Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO/CloudSat simulators. *Journal of Geophysical Research*, **115**, D00H14. - Satoh M. (2010): What are problems on cloud simulations? Mutiscale structure of cloud systems and global cloud resolving model. *Kagaku*, 80, 925-926. (佐藤正樹 (2010): 雲のシミュレーションの何が問題か一雲の階層構造シミュレーションと全球 雲解析モデル、科学、80, 925-926.) - Satoh M. (2010): Climate study using a global cloud-resolving model: cloud microphysics and climate sensitivity. *Kaiyo monthly*, **42**, 305-314. (佐藤正樹 (2010): 全球雲解像モデルによる気候研究~雲微物理過程と気候感度の観点から. 月刊海洋, **42**, 305-314.) - Satoh M. (2010): Climate Study Using a Global Cloud-resolving Model. *Chigaku Zasshi*, **119**, 427-440. (佐藤正樹 (2010): 全球雲解像モデルによる気候変動予測. 地学雑誌, **119**, 427-440.) - Satoh M. (2010): Climate Study Using a Global Cloud-resolving Model. *Japan Geoscience Letters*, **6**, 1-3. (佐藤正樹 (2010): 全球雲解像モデルによる気候変動予測. *Japan Geoscience Letters*, **6**, 1-3.) - Schneider M., Yoshimura K., Hase F. and Blumenstock T. (2010): The ground-based FTIR network's potential for investigating the atmospheric water cycle. *Atmospheric Chemistry and Physics*, **10**, 3427-3442. - Seiki A., Takayabu Y.N., Yoneyama K. and Shirooka R. (2010): The impact of trade surges on the Madden-Julian Oscillation under different ENSO conditions. *SOLA*, **6**, 49-52. - Sherwood S.C., Ingram W., Tsushima Y., Satoh M., Roberts M., Vidale P.L. and O'Gorman P.A. (2010): Relative humidity changes in a warmer climate. *Journal of Geophysical Research*, 115, D09104. - Shiogama H., Emori S., Mochizuki T., Yasunaka S., Yokohata T., Ishii M., Nozawa T. and Kimoto M. (2010): Possible influence of volcanic activity on the decadal potential predictability of the natural variability in near-term climate predictions. *Advances in Meteorology*, 2010, 65718. - Siddall M., Abe-Ouchi A., Andersen M., Antonioli F., Bamber J., Bard E., Clark J., Clark P., Deschamps P., Dutton A., Elliot M., Gallup C., Gomez N., Gregory Y., Huybers P., Kawamura K., Kelly M., Lambeck K., Lowell T., Mitrovica J., Otto-Bliesner B., Richards D., Stanford J., Stirling C., Stocker T., Thomas A, Thompson B., Törnqvist T., Vázquez Riveiros N., Waelbroeck C., Yokoyama Y. and Yu S. (2010): The sea-level conundrum: case studies from palaeo-archives. *Journal of Quaternary Science*, 25, 19-25. - Tachiiri K., Hargreaves J.C., Annan J.D., Oka A., Abe-Ouchi A. and Kawamiya M. (2010): Development of a system emulating the global carbon cycle in Earth system models. *Geoscience model development*, **3**, 365-376. - Takayabu Y.N., Shige S., Tao W.-K. and N. Hirota (2010): Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. *Journal of Climate*, 23, 2030-2046. - Tanaka H., Boku T. and Satoh M. (2010): Historical progress of the dynamical core of the general circulation model of the atmosphere. Nagare, 29, 27-32. (田中 博・朴 泰祐・佐藤正樹 (2010): 大気大循環モデルカ学コアの変遷について、ながれ, 29, 27-32.) - Taniguchi H., Yanase W. and Satoh M. (2010): Ensemble simulation of cyclone Nargis by a Global Cloud-system-resolving Model modulation of cyclogenesis by the Madden-Julian Oscillation. *Journal of the Meteorological Society of Japan*, 88, 571-591. - Tao W.-K., Lang S., Zeng X., Shige S. and Takayabu Y.N., (2010): Relating convective and stratiform rain to latent heating. *Journal of Climate*, 23, 1874-1893. - Tatebe H. and Hasumi H. (2010): Formation mechanism of the Pacific equatorial thermocline revealed by a general circulation model with a high accuracy tracer advection scheme. *Ocean Modelling*, **35**, 245-252. - Timmermanm A., Knies J., Timm O.E., Abe-Ouchi A. and Friedrich T. (2010): Promotion of glacial ice sheet buildup 60-115 kyr B.P. by precessionally paced Northern Hemispheric meltwater pulses. *Paleoceanography*, **25**, PA4208. - Tsugawa M. and Hasumi H. (2010): Generation and growth mechanism of the Natal Pulse. *Journal of Physical Oceanography*, **40**, 1597-1612. - Urakawa L.S. and Hasumi H. (2010): Role of parameterized eddies in the energetics of the global thermohaline circulation: cabbeling versus restratification. *Journal of Physical Oceanography*, **40**, 1894-1901. - Watanabe M., Suzuki T., O'ishi R., Komuro Y., Watanabe S., Emori S., Takemura T., Chikira M., Ogura T., Sekiguchi M., Takata K., Yamazaki D., Yokohata T., Nozawa T., Hasumi H., Tatebe H. and Kimoto M. (2010): Improved
climate simulation by MIROC5: Mean states, variability, and climate sensitivity. *Journal of Climate*, 23, 6312-6335. - Yamada Y., Oouchi K., Satoh M., Tomita H. and Yanase W. (2010): Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-system-resolving approach. *Geophysical Research Letters*, **37**, L07709 - Yamashita Y., Sakamoto K., Akiyoshi H., Takahashi M., Nagashima T. and Zhou L.B. (2010): Ozone and temperature response of a chemistry climate model to the solar cycle and sea surface temperature. *Journal of Geophysical Research* 115, D00M05. - Yanase W. and Abe-Ouchi A. (2010): A numerical study on the atmospheric circulation over the mid-latitude North Pacific during the last glacial maximum. *Journal of Climate*, **23**, 135-151. - Yasui S. and Watanabe M. (2010): Forcing mechanisms of the summertime circumglobal teleconnection in a dry AGCM. *Journal of Climate*, 23, 2093-2114. - Yasunaga K., Yoneyama K., Moteki Q., Fujita M., Takayabu Y.N., Suzuki J. and Mapes B.E. (2010): Characteristics of 3-4-day and 6-8-day period disturbances observed over the tropical Indian Ocean. *Monthly Weather Review*, **138**, 4158-4174. - Yokohata T., Webb M.J., Collins M., Williams K.D., Yoshimori M., Hargreaves J.C. and Annan J.D. (2010): Structural similarities and differences in climate responses to CO₂ increase between two perturbed physics ensembles. *Journal of Climate*, 23. 1392-1410 - Yokoi S. and Takayabu Y.N., (2010): Environmental and external factors in the genesis of tropical cyclone Nargis in April 2008 over the Bay of Bengal. *Journal of the Meteorological Society of Japan*, **88**, 425-435. - Yoshimori M., Raible C. C., Stocker T.F. and Renold M. (2010): Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. *Climate Dynamics*, **34**, 101-121. - Yoshimura K., Kanamitsu M. and Dettinger M. (2010): Regional downscaling for stable water isotopes: A case study of an atmospheric river event. *Journal of Geophysical Research Atmosphere*, **115**, D18114. - Zhang C., Jian L., Hagos S., Tao W.-K., Lang S., Takayabu Y.N., Shige S., Katsumata M., Olson W.S. and L'Ecuyer T.S. (2010): MJO Signals in latent heating: Results from TRMM retrievals. *Journal of the Atmospheric Sciences*, **67**, 3488-3508. ### Physical Oceanography - Iga K. (2010): Statistical theory applied to a vortex street generated from meander of a jet. *Theoretical and Computational Fluid Dynamics*, **24**, 283-289. - Ito J., Niino H. and Nakanishi M. (2010): Large eddy simulation on dust suspension in a convective mixed layer. SOLA, 6, 133-136 - Ito J., Tanaka R., Niino H. and Nakanishi M. (2010): Large eddy simulation of dust devils in a diurnally-evolving convective mixed layer. *Journal of the Meteorological Society of Japan*, **88**, 63-77. - Itoh S. and Yasuda I. (2010): Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension regions detected from the distribution of the sea surface height anomaly. *Journal of Physical Oceanography*, **40**, 1018-1034. - Itoh S. and Yasuda I. (2010): Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific. *Journal of Physical Oceanography*, **40**, 2624-2642. - Itoh S., Yasuda I., Nakatsuka T., Nishioka J. and Volkov Y.N. (2010): Fine- and microstructure observations in the Urup Strait, Kuril Islands, during August of 2006. *Journal of Geophysical Research*, **115**, C08004. - Kawabe M. and Fujio S. (2010): Pacific Ocean circulation based on observation. Journal of Oceanography, 66, 389-403. - Nagano A., Michida Y., Odamaki M., Suzuki K. and Ogata J. (2010): Seiches in Lützow Holm Bay, Antaectica. *Polar Science*, **4**, 34-41. - Noda A.T. and Niino H. (2010): A numerical investigation of a supercell tornado: Its genesis and vorticity budget. *Journal of the Meteorological Society of Japan*, **88**, 135-159. - Noguchi T. and Niino H. (2010): Multi-layered diffusive convection. Part 1. Spontaneous layer formation. *Journal of Fluid Mechanics*. **651**. 443-464. - Noguchi T. and Niino H. (2010): Multi-layered diffusive convection. Part 2. Dynamics of layer evolution. *Journal of Fluid Mechanics*, **651**, 465-481. - Oka E. (2010): Mode waters in the North Pacific Ocean. *Aquabiology*, **32**, 205-210. (岡 英太郎 (2010): 北太平洋のモード水. 海洋と生物, **32**, 205-210.) - Oka E. (2010): New aspects on the circulation of Subtropical and Central Mode Waters in the North Pacific Ocean. *Kaiyo monthly*, 42, 628-637. (岡 英太郎 (2010): 北太平洋亜熱帯モード水・中央モード水の新たな循環像、月刊海洋、42, 628-637.) - Yanagimoto D., Kawabe M. and Fujio S. (2010): Direct velocity measurements of deep circulation southwest of the Shatsky Rise in the western North Pacific. *Deep-Sea Research Part 1*, **57**, 328-337. - Yanase W., Satoh M., Yamada H., Yasunaga K. and Moteki Q. (2010): Continual influences of tropical waves on the genesis and rapid intensification of Typhoon Durian (2006). *Geophysical Research Letters*, 37, L08809. - Yanase W., Taniguchi H. and Satoh M. (2010): The genesis of tropical cyclone Nargis (2008): environmental modulation and numerical predictability. *Journal of the Meteorological Society of Japan*, **88**, 497-519. - Yukimoto S., Niino H., Noguchi T., Kimura R. and Moulin F. (2010): Structure of a bathtub vortex: Importance of the bottom boundary layer. *Theoretical and Computational Fluid Dynamics*, **24**, 323-327. #### **Chemical Oceanography** - Adachi H., Yamano H., Miyajima T. and Nakaoka M. (2010): A simple and robust method for coring unconsolidated sediment in shallow water. *Journal of Oceanography*, **66**, 865-872. - Aoki K., Kitajima K., Masago H., Nishizawa M., Terabayashi M., Omori S., Yokoyama T., Takahata N., Sano Y. and Maruyama S. (2010): Reply to "Comment on 'Metamorphic P-T-time history of the Sanbagawa belt in central Shikoku, Japan and implications for retrograde metamorphism during exhumation' " by S. R. Wallis and S. Endo. *Lithos*, **116**, 197-199. - Burd A.B., Hansell D.A., Steinberg D.K., Anderson T.R., Aristegui J., Baltar F., Beaupré S.R., Buesseler K.O., DeHairs F., Jackson G.A., Kadko D.C., Koppelmann R., Lampitt R.S., Nagata T., Reinthaler T., Robinson C., Robison B.H., Tamburini C. and Tanaka T. (2010): Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @\$#! is wrong with present calculations of carbon budgets? *Deep-Sea Research Part II*, 57, 1557-1571. - Gamo T. (2010): Sampling at sea. In *A practical handbook for experiments in geochemistry*, edited by Tanaka T. and Yoshida N., Baifukan, Tokyo, 46-61. (蒲生俊敬 (2010): 海洋試料. 「地球化学講座8(地球化学実験法)」(田中 剛·吉田尚弘編),培風館. 東京. 46-61.) - Gamo T. (2010): A progress report and perspective on the GEOTRACES program: trace element oceanography initiative. *Kaiyo monthly*, 42, 3-7. (蒲生俊敬 (2010): GEOTRACES計画の現状と展望: 微量元素海洋学の展開に向けて、月刊海洋, 42, 3-7.) - Gamo T., Tsunogai U., Hirota A., Kang D-J. and Kim K-R. (2010): Dissolved methane and its carbon isotope ratio in the Japan Sea (East Sea). *Proceedings of the 5th PEACE Workshop*, 137-143. - Gamo T., Tsunogai U., Ichibayashi S., Chiba H., Obata H., Oomori T., Noguchi T., Baker E.T., Doi T., Maruo M. and Sano Y. (2010): Microbial carbon isotope fractionation to produce extraordinarily heavy methane in aging hydrothermal plumes over the southwestern Okinawa Trough. *Geochemical Journal*, 44, 477-487. - Horiguchi K., Ueki S., Sano Y., Takahata N., Hasegawa A. and Igarashi G. (2010): Geographical distribution of helium isotope ratios in northeastern Japan. *Island Arc*, **19**, 60-70. - Kawagucci S., Shirai K., Lan T.F., Takahata N., Tsunogai U., Sano Y. and Gamo T. (2010): Gas geochemical characteristics of hydrothermal plumes at the HAKUREI and JADE vent sites, the Izena Cauldron, the Okinawa Trough. *Geochemical Journal*, 44, 507-518. - Kawagucci S., Toki T., Ishibashi J., Takai K., Ito M., Oomori T. and Gamo T. (2010): Isotopic variation of molecular hydrogen in 20° -375°C hydrothermal fluids as detected by a new analytical method. *Journal of Geophysical Research*, **115**, G03021. - Lan T.F., Sano Y., Yang T.F., Takahata N., Shirai K. and Pinti D.L. (2010): Evaluating Earth degassing in subduction zones by measuring helium fluxes from the ocean floor. *Earth and Planetary Science Letters*, **298**, 317-322. - Maki K., Kim C., Yoshimizu C., Tayasu I., Miyajima T. and Nagata T. (2010): Autochthonous origin of semi-labile dissolved organic carbon in a large monomictic lake (Lake Biwa): Carbon stable isotopic evidence. *Limnology*, 11, 143-153. - Miyajima T. and Umezawa Y. (2010): Stable isotope composition of nitrogen (δ¹⁵N) as a tool for investigating nitrogen cycling in coral reef ecosystems. In *Earth*, *Life*, *and Isotopes*, edited by Ohkouchi N., Tayasu I. and Koba K., Kyoto University Press, Kyoto, 197-222. - Nagata T. (2010): Use of multiple stable isotopes in diagnosing the nitrogen loading in watersheds. *Global environmental research*, **15**, 189-194. (永田 俊 (2010): 各種安定同位体を用いた流域窒素負荷の診断. 地球環境, **15**, 189-194.) - Nagata T., Tamburini C., Arístegui J., Baltar F., Bochdansky A., Fonda-Umani S., Fukuda H., Gogou A., Hansell D.A., Hansman R.L., Herndl G.J., Panagiotopoulos C., Reinthaler J. Sohrin R., Verdugo P., Yamada N., Yamashita Y., Yokokawa T. and Bartlett D.H. (2010): Emerging concepts on microbial processes in the bathypelagic ocean ecology, biogeochemistry, and genomics. *Deep-Sea Research Part II*, 57, 1519-1536. - Nakayama N., Ashi J., Tsunogai U., Gamo T. and Tanahashi M. (2010): Sources of pore water in a Tanegashima mud volcano inferred from chemical and stable isotopic studies. *Geochemical Journal*, 44, 561-569. - Nishizawa M., Maruyama S., Urabe T., Takahata N. and Sano Y. (2010): Micro-scale (1.5 µm) sulphur isotope analysis of contemporary and early Archean pyrite. *Rapid Communications in Mass Spectrometry*, **24**, 1397-1404. - Ogawa H.
(2010): Analyses of chemical components in marine environments. In *Guide book of environmental anlyrses*, edited by Japan Society for Analytical Chemistry, Maruzen, Tokyo, 559-563. (小川浩史 (2010): 海洋調査分析一有機炭素, 有機窒素. 「環境分析ガイドブック」(日本分析化学会編), 丸善, 東京, 559-563.) - Ogawa N., Nagata T., Kitazato H. and Ohkouchi N. (2010): Ultra-sensitive elemental analyzer/isotope ratio mass spectrometer for stable nitrogen and carbon isotope analyses. In *Earth, Life, and Isotopes*, edited by Ohkouchi N., Tayasu I. and Koba K., Kyoto University Press, Kyoto, 339-353. - Osawa Y., Fujita K., Umezawa Y., Kayanne H., Ide Y., Nagaoka T., Miyajima T. and Yamano H. (2010): Human impacts on large benthic foraminifers near a densely populated area of Majuro Atoll, Marshall Islands. *Marine Pollution Bulletin*, **60**, 1279-1287. - Pradeep Ram A.S., Nishimura Y., Tomaru Y., Nagasaki K. and Nagata T. (2010): Seasonal variation in viral-induced mortality of bacterioplankton in the water column of a large mesotrophic lake (Lake Biwa, Japan). *Aquatic Microbial Ecology*, **58**, 249-259. - Sano Y., Furukawa Y. and Takahata N. (2010): Atmospheric helium isotope ratio: Possible temporal and spatial variations. *Geochimica et Cosmochimica Acta*, **74**, 4893-4901. - Sohrin R., Imazawa M., Fukuda H., and Suzuki Y. (2010): Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean. *Deep-Sea Research II*, **57**, 1537–1550. - Sugimoto R., Kasai A., Miyajima T. and Fujita K. (2010): Modeling phytoplankton production in Ise Bay, Japan: Use of nitrogen isotopes to identify dissolved inorganic nitrogen sources. *Estuarine. Coastal and Shelf Science*, **86**, 450-466. - Sugiura N., Ichimura K., Fujiya W. and Takahata N. (2010): Mn/Cr relative sensitivity factors for synthetic calcium carbonate measured with a NanoSIMS ion microprobe. *Geochemical Journal*, 44, e11-e16. - Takahata N., Tokutake T., Shirai K., Fujio S., Tanaka K. and Sano Y. (2010): Helium isotopes of seawater in the Philippine Sea and the western North Pacific. *Geochemical Journal*, 44, 451-460. - Tanaka Y., Ogawa H. and Miyajima T. (2010): Effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen by the scleractinian coral *Montipora digitata*. *Coral Reefs*, 29, 675-682. - Yang Y., Motegi C., Yokokawa T. and Nagata T. (2010): Large-scale distribution patterns of virioplankton in the upper ocean. Aquatic Microbial Ecology, 60, 233-246. - Yokokawa T. and Nagata T. (2010): Linking bacterial community structure to carbon fluxes in marine environments. *Journal of Oceanography*, **66**, 1-12. - Yoshimizu C., Yoshiyama K., Tayasu I., Koitabashi T. and Nagata T. (2010): Vulnerability of a large monomictic lake (Lake Biwa) to warm winter event. *Limnology*, 11, 233-239. #### Ocean Floor Geoscience - Ando A., Nakano T., Kawahata H., Yokoyama Y. and Khim B.-K. (2010): Testing seawater Sr isotope ratios on a glacial-interglacial timescale: An application of latest high-precision thermal ionization mass spectrometry. *Geochemical Journal*, 44, 347-359. - Araoka D., Inoue M., Suzuki A., Yokoyama Y., Edwards R.L., Cheng H., Matsuzaki H., Kan H., Shikazono N. and Kawahata H. (2010): Historic 1771 Meiwa tsunami confirmed by high-resolution U/Th dating of massive *Porites* coral boulders at Ishigaki Island in the Ryukyus, Japan. *Geochemistry Geophysics Geosystems*, 11, Q06014. - Ashi J. (2010): Submarine landslide caused by methane hydrate dissociation. *Chikyu monthly*, **61**, 64-70. (芦 寿一郎 (2010): メタンハイドレート分解による海底地すべり. 月刊地球, **61**, 64-70.) - Bangs N.L., Hornbach M.J., Moore G.F. and Park J.-O. (2010): Massive methane release triggered by seafloor erosion offshore southwestern Japan. *Geology*, **38**, 1019-1022. - Chen M.-T., Lin X.P., Chang Y.-P., Chen Y.-C., Lo L., Shen C.-C., Yokoyama Y., Oppo D.W., Thompson W.G. and Zhang R. (2010): Dynamic millennial-scale climate changes in the Northwestern Pacific over the past 40,000 years. *Geophysical Research Letters*, 37, L23603. - Curewitz D., Okino K., Asada M., Baranov B., Gusev E. and Tamaki K. (2010): Structural analysis of fault populations along the oblique, ultra-slow spreading Knipovich Ridge, North Atlantic Ocean, 74° 30'N-77° 50'N. Structural Geology, 32, 727-740. - Esat T.M. and Yokoyama Y. (2010): Coupled uranium isotope and sea-level variations in the oceans. *Geochimica et Cosmochimica Acta*, **74**, 7008-8020. - Expedition 325 Scientists (Webster J.M., Yokoyama Y., Inoue M., et.al.) (2010): Great Barrier Reef environmental changes: the last deglacial sea level rise in the South Pacific: offshore drilling northeast Australia. *IODP Preliminary Report*, 325,. - Felis T., Suzuki A., Kuhnert H., Rimbu N. and Kawahata H. (2010): Pacific Decadal Oscillation documented in a coral record of North Pacific winter temperature since 1873. *Geophysical Research Letters*, **37**, L14605. - Fujita.K., Omori A., Yokoyama Y., Sakai S. and Iryu Y. (2010): Sea-level rise during Termination II inferred from large benthic foraminifers: IODP Expedition 310, Tahiti Sea Level. *Marine Geology*, 271, 149-155. - González C., Urrego L.E., Martínez J.I., Polanía J. and Yokoyama Y. (2010): Mangrove dynamics in the southwestern Caribbean since the 'Little Ice Age': A history of human and natural disturbances. *The Holocene*, **20**, 849-861. - Inoue M., Yokoyama Y., Harada M., Suzuki A., Kawahata H., Matsuzaki H. and Iryu Y. (2010): Trace element variations in fossil corals from Tahiti collected by IODP Expedition 310: Reconstruction of marine environments during the last deglaciation (15 to 9 ka). Marine Geology, 271, 303-306. - Iryu Y., Kawahata H., Kuroda J., Nishi H., Yokoyama Y. and Ohkouchi N. (2010): Survival in climate crisis. *Chikyu monthly*, **32**, 112-119. (井龍康文・川幡穂高・黒田潤一郎・西 弘嗣・横山祐典・大河内直彦 (2010): 地球表層環境一古環境から未来環境へ、現状を生き抜くために一. 月刊地球, **32**, 112-119.) - Kandilarov A., Landa H., Mjelde R., Pedersen R.B., Okino K. and Murai Y. (2010): Crustal structure of the ultra-slow spreading Knipovich Ridge, North Atlantic, along a presumed ridge segment center. *Marine Geophysical Researches*, **31**, 173-195. - Kawahata, H. and Yamamoto, H. (2010): Envi- ronments in Jomon era II: Environmental change around Sannai-maruyama site. **Chishitsu News, 666, 31-38. (川幡穂高・山本尚史 (2010): 縄文時代の古環境, その2 一三内丸山遺跡周辺の環境変遷 一. 地質ニュース, 666, 31-38.) - Kawahata H. and Domestic steering committee for INVEST (2010): Introduction for domestic white paper for INVEST, IODP. Chikyu monthly, 32, 67-70. (川幡穂高・INVEST国内運営委員会委員 (2010): IODP, INVEST会議国内報告書. 月刊地球, 32, 67-70.) - Kawahata, H. and Yamazaki, T. (2010): Current status, problems and expectation in IODP implementation and research structure. *Kaiyo monthly*, **32**, 125-127. (川幡穂高・山崎俊嗣 (2010): IODP (統合国際深海掘削計画) 実施・研究体制の現 状・問題点・そして将来への期待。月刊地球、**32**, 125-127) 海洋 43(6), 353-355 - Kawahata, H. and Suzuki, A. (2010): Ocean acidification and future ocean environments. *Kaiyo monthly*, **42**, 2-7. (川幡穂高, 鈴木淳 (2010): 海洋酸性化と将来の海洋環境. 月刊海洋. **42**, 2-7.) - Kubota Y., Kimoto K., Tada R., Oda H., Yokoyama Y. and Matsuzaki H. (2010): Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea. Paleoceanography, 25, PA4205. - Martin K.M., Gulick S.P.S., Bangs N.L.B., Moore G.F., Ashi J., Park J.-O., Kuramoto S. and Taira T. (2010): Possible strain partitioning structure between the Kumano fore-arc basin and the slope of the Nankai Trough accretionary prism. *Geochemistry*, *Geophysics*, *Geosystems*, 11, Q0AD02. - Martinez J I., Yokoyama Y., Gomez A., Delgado A. and Matsuzaki H., (2010): Late Holocene marine terraces of the Cartagena region, southern Caribbean: The product of neotectonism or a former high stand in sea-level? *Journal of South American Earth Sciences*, 29, 214-224. - Mishima M., Suzuki A., Nagao M., Ishimura T., Inoue M. and Kawahata H. (2010): Abrupt shift toward cooler condition in the earliest 20th century detected in a 165 year coral record from Ishigaki Island, southwestern Japan. *Geophysical Research Letters*, 37, L15609. - Miyahara H., Kitazawa K., Nagaya K., Yokoyama Y., Matsuzaki H., Masuda K., Nakamura T. and Muraki Y. (2010): Is the Sun heading for another Maunder Minimum? -Precursors of the grand solar minima. *Journal of Cosmology*, **8**, 1970-1982. - Miyaji T., Tanabe K., Matsushima Y., Sato S., Yokoyama Y. and Matsuzaki H. (2010): Response of daily and annual shell growth patterns of the intertidal bivalve *Phacosoma japonicum* to Holocene coastal climate change in Japan. *Palaeogeography, Palaeoclimatology, Palaeoecology, 286*, 107-120. - Musashi M., Isozaki Y. and Kawahata H. (2010): An Early-Middle Guadalupian (Permian) isotopic record from a mid-oceanic Carbonate buildup: Akiyoshi Limestone, Japan. *Global Planetary Change*, **73**, 114-122. - Okino K. (2010): Mountains and hotsprings in deep sea. In *Marine Professionals introduction to oceanography*, edited by Kubokawa K., Tokai University Press, Kanagawa, 71-85. (沖野郷子 (2010): 海の底には山や温泉がある. 「海のプロフェッショナル 海洋学への招待状」(窪川かおる編), 東海大学出版会, 神奈川, 71-85.) - Otsuka H., Morita S., Tanahashi M., Nagakubo S. and Ashi J. (2010): Possible migration front of gas-related fluid inferred from 3D reflection seismic survey in the eastern Nankai Trough. *Journal of the Japanese Association for Petroleum Technology*, 76, 39-42. (大塚宏徳・森田澄人・棚橋 学・長久保定雄・芦 寿一郎 (2010): 東部南海トラフ三次元反射法地震探査断面に見られる地層流体の分布を示唆する音響反射面. 石油技術協会誌, 76, 39-42.) - Park J.-O., Fujie G., Wijerathne L., Hori T., Kodaira S., Fukao Y., Moore G.F., Bangs N.L., Kuramoto S. and Taira A. (2010): A low-velocity zone with weak reflectivity along the Nankai subduction zone. *Geology*, **38**, 283-286. - Satoh T., Omata T., Suzuki A., Minoshima K., Nomaru E., Murakami A., Murayama S., Kawahata H. and Maruyama T. (2010): Long-term culture experiment of *Porites* under light-controlled conditions: Analyses of skeletal δ¹³C
and photosynthetic parameters. *JAMSTEC report of the research and development.*, 11, 41-56, 331. - Shiroya K., Yokoyama Y. and Matsuzaki H. (2010): Quantitative determination of long-term erosion rates of weathered granitic soil surfaces in western Abukuma, Japan using cosmogenic ¹⁰Be and ²⁶Al depth profile. *Geochemical Journal*, **44**, e22-e27. - Simms A.R., Aryal N., Miller L. and Yokoyama Y. (2010): The incised valley of Baffin Bay, Texas: a tale of two climates. Sedimentology, 57, 642-669. - Suganuma Y., Yokoyama Y., Yamazaki T., Kawamura K., Horng C.S. and Matsuzaki H. (2010): ¹⁰Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama-Brunhes boundary. *Earth and Planetary Science Letters*, **296**, 443-450. - Tyler J., Kashiyama Y., Ohkouchi N., Ogawa N., Yokoyama Y., Chikaraishi Y., Staff R.A., Ikehara M., Bronk Ramsey C., Bryant C., Brock F., Gotanda K., Haraguchi T., Yonenobu H. and Nakagawa T. (2010): Chlorin specific carbon and nitrogen isotopes track aquatic change over the last deglaciation in Lake Suigetsu, Japan. Geochemistry, Geophysics, Geosystems, 11, Q09010. - Ushie H., Kawahata H., Suzuki A., Murayama S. and Inoue M. (2010): Enhanced riverine carbon flux from carbonate catchment to the ocean: A comparative hydrogeochemical study on Ishigaki and Iriomote islands, southwestern Japan. *Journal of Geophysical Research*, **115**, G02017. - Watanabe M., Okino K., and Kodera T. (2010): Rifting to spreading in the southern Lau Basin: Variations within the transition zone. *Tectonophysics*, **494**, 226-234. - Yamaguchi Y.T., Yokoyama Y., Miyahara H., Sho K. and Nakatsuka T. (2010): Synchronized Northern Hemisphere climate change and solar magnetic cycles during the Maunder Minimum. *Proceedings of the National Academy of Sciences of the* USA, 107, 20697-20702. - Yokoyama Y. (2010): Earth surface environmental changes during the last two terminations. *Quaternary Research*, **49**, 337-356. (横山祐典 (2010): ターミネーションの気候変動. 第四紀研究, **49**, 337-356.) - Yokoyama Y., Koizumi M., Matsuzaki H., Miyairi Y. and Ohkouchi N. (2010): Developing ultra small-scale radiocarbon sample measurement at the University of Tokyo. *Radiocarbon*, 52, 310-318. - Yoshimura T., Kawahata H., Nakashima R., Suzuki A. and Tomioka N. (2010): Oxygen and carbon isotope records of cultured freshwater pearl mussel *Hyriopsis* sp. shell from Lake Kasumigaura, Japan. *Journal of Paleoclimnology*, **43**, 437-448. ## Marine Ecosystems Dynamics - Asante K.A., Agusa T., Kubota R., Mochizuki H., Ramu K., Nishida S., Ohta S., Yeh H., Subramanian A. and Tamabe S. (2010): Trace elements and stable isotope ratios (δ¹³C and δ¹⁵N) in fish from deep-waters of the Sulu Sea and the Celebes Sea. *Marine Pollution Bulletin*. **60**, 1560-1570. - Bucklin A., Nishida S., Schnack-Schiel S., Wiebe P.H., Lindsay D.J., Machida R.J. and Copley N.J. (2010): Chapter 13, A Census of Zooplankton of the Global Ocean. In *Life in the World's Oceans: Diversity, Distribution, and Abundance*, edited by McIntyre A.D.. Blackwell. Oxford, 247-265. - Fujikura K., Lindsay D.J., Kitazato H., Nishida S. and Shirayama Y. (2010): Marine biodiversity in Japanese waters. *PLoS ONE*, 5, e11836. Haldar S., Neogi S.B., Kogure K., Chatterjee S., Chowdhury N., Hinenoya A., Asakura M. and Yamasaki S. (2010): Development of a hemolysin gene-based multiplex PCR for simultaneous detection of *Vibrio campbellii*, *Vibrio harveyi* and *Vibrio parahaemolyticus*, *Letters in Applied Microbiology*, 50, 146-152. - Hendry A.P., Lohmann L.G., Conti E., Cracraft J., Crandall K.A., Faith D.P., Häuser C., Joly C.A, Kogure K., Larigauderie A., Magallón S., Mortiz C., Tillier S., Zardoya R., Prieur-Richard A.-H., Walther B.A., Yahara T. and Donoghue M.J. (2010): Evolutionary biology in biodiversity science and conservation: A call to action. *Evolution*, **64**, 1517-1528. - Johnson S.B., Warén A., Lee R., Kano Y., Kaim A., Davis A., Strong E. and Vrijenhoek R.C. (2010): *Rubyspira*, new genus and two new species of bone-eating deep-sea snails with ancient habits. *Biological Bulletin*, 219, 166-177. - Jörger K.M., Stöger I., Kano Y., Fukuda H., Knebelsberger T. and Schrödl M. (2010): On the origin of Acochlidia and other enigmatic euthyneuran gastropods as inferred from multigene markers, *BMC Evolutionary Biology*, **10**, 323. - Kamimura S., Itoh H., Ozeki S. and Kojima S. (2010): Molecular phylogeny of *Cerithidea* gastropods inhabiting Suncheon Bay, and the Japanese and Ryukyu Islands. *Plankton and Benthos Research*, **5** (Suppl.), 250-254. - Kano Y. and Fukumori H. (2010): Predation on hardest molluscan eggs by confamilial snails (Neritidae) and its potential significance in egg-laying site selection. *Journal of Molluscan Studies*, 76, 360-366. - Kasai H., Nakano Y. Ono T. and Tsuda A. (2010): Seasonal change of oceanographic conditions and chlorophyll a vertical distribution in the southwestern Okhotsk Sea during the non-iced season. *Journal of Oceanography*, **66**, 13-26. - Kojima S. (2010): Extensive mitochondrial genome rearrangements between Cerithioidea and Hypsogastropoda (Mollusca; Caenogastropoda) as determined from the partial nucleotide sequences of the mitochondrial DNA of Cerithidea djadjariensis and Batillaria cumingi. Zoological Science, 27, 494-498. - Konno U., Tsunogai U., Komatsu D., Daita S., Nakagawa F., Tsuda A., Matsui T., Eum Y.-J. and Suzuki K. (2010): Significance of N₂ fixation in dissolved fractions of organic nitrogen. *Biogeosciences*, 7, 2369-2377. - Kurihara M.K., Kimura M., Iwamoto Y., Narita Y., Ooki A., Eum Y.-J., Tsuda A., Suzuki K., Tani Y., Yokouchi Y., Uematsu M. and Hashimoto S. (2010): Distributions of short-lived iodocarbons and biogenic trace gases in the open ocean and atmosphere in the western North Pacific. *Marine Chemistry*, 118, 156-170. - Machida R.J. and Tsuda A. (2010): Dissimilarity of species and forms of planktonic *Neocalanus* copepods using mitochondrial COI, 12S, nuclear ITS, and 28S gene sequences. *PLoS One*, 5, e10278. - Machida R.J. and Nishida S. (2010): Amplified fragment length polymorphism analysis of the mesopelagic copepod Disseta palumbii in the equatorial western Pacific and adjacent waters: Role of marginal seas in the genetic isolation of mesopelagic animals. Deep-Sea Research Part II, 57, 2130-2134. - Matsuura H., Nishida S. and Nishikawa J. (2010): Species diversity and vertical distribution of the deep-sea copepods of the genus *Euangaptilus* in the Sulu and Celebes Seas. *Deep-Sea Research Part II*, **57**, 2098-2109. - Miyamoto H., Machida R.J. and Nishida S. (2010): Complete mitochondrial genome sequences of the three pelagic chaetognaths Sagitta nagae, Sagitta decipiens and Sagitta enflata. Comparative Biochemistry and Physiology Part D, 5, 65-72. - Miyamoto H., Machida R.J. and Nishida S. (2010): Genetic diversity and cryptic speciation of the deep sea chaetognath Caecosagitta macrocephala (Fowler, 1904). Deep-Sea Research Part II, 57, 2211-2219. - Neogi S.B., Chowdhury N., Asakura M., Hinenoya A., Haldar S., Saidi S.M., Kogure K., Lara R.J. and Yamasaki S. (2010): A highly sensitive and specific multiplex PCR assay for simultaneous detection of *Vibrio cholerae*, *Vibrio parahaemolyticus* and *Vibrio vulnificus*. *Letters in Applied Microbiology*, 51, 293-300. - Nishikawa J., Toczko S. and Hosie G.W. (2010): Distribution and community structure of euphausiids in the Southern Ocean along the 140° E meridian during the austral summer 2001/2002. *Deep-Sea Research Part II*, 57, 559-564. - Okada N., Matsuda S., Matsuyama J., Park K.-S., de los Reyes C., Kogure K., Honda T. and lida T. (2010): Presence of genes for type III secretion system in *Vibrio mimicus* strains. *BMC Microbiology*, **10**: 302. - Park S., Yoshizawa S., Hamasaki K., Kogure K. and Yokota A. (2010): Psychrosphaera saromensis gen. nov., sp. nov., within the family Pseudalteromonadaceae, isolated from Lake Saroma, Japan. Journal of General and Applied Microbiology, 56, 475-480. - Raynold K.C., Watanabe H., Strong E.E., Sasaki T., Uematsu K., Miyake H., Kojima S., Suzuki Y., Fujikura K., Kim S. and Young C.M. (2010): New molluscan larval form: brooding and development in a hydrothermal vent gastropod, *Ifremeria nautilei* (Provannidae). *Biological Bulletin*, 219, 7-11. - Sasaki T., Waren A., Kano Y., Okutani T. and Fujikura K. (2010): Gastropods from Recent hot vents and cold seeps: systematic, diversity and life strategies. In *The Vent and Seep Biota: Topics in Geobiology*, edited by Kiel S., Springer, Dordrecht, Netherlands, 169-254. - Tada Y., Taniguchi A. and Hamasaki K. (2010): Phylotype-specific growth rates of marine bacteria measured by bromodeoxyuridine immunocytochemistry and fluorescence *in situ* hybridization. *Aquatic Microbial Ecology*, **59**, 229-238. - Tsuda A., Fukami K., Kiyosawa H., Suzuki K., Takeda S., Nishioka J., Takahashi M., Johnson K.W. and Wong C.-S. (2010): Response of lower trophic organisms to nutrients input and effects on carbon budget: a mesocosm experiment. *Plankton and Benthos Research*, 5, 144-155. - Watanabe H., Fujikura K., Kojima S., Miyazaki J. and Fujiwara Y. (2010): Japan: Vents and seeps in close proximity. In *The Vent and Seep Biota: Topics in Geobiology*, edited by Kiel S., Springer, Dordrecht, Netherlands, 379-401. - Watanabe H. and Kojima S. (2010): Connectivity between deep-sea hydrothermal vent and hydrocarbon seep fauna inferred from DNA. *Iden*, **64**, 60-64. (渡部裕美・小島茂明 (2010): DNAからみる熱水噴出域と湧水域の生物群集のつながり. 生物の科学 遺伝, **64**, 60-64.) - Watanabe H., Kojima S. and Fujikura K. (2010): Estimation of population dynamics of deep-sea hydrothermal vent animal assemblages using genetic analyses. *Aquabiology*, **32**, 561-566. (渡部裕美・小島茂明・藤倉克則 (2010): 遺伝学的手法を用いた深海熱水噴出域生物群集の個体群動態の推定. 海洋と生物, **32**, 561-566.) - Wiebe P.H., Schnack-Schiel S.B. and Nishida S. (2010): Introduction to specie diversity of marine zooplankton. *Deep-Sea
Research Part II*, 57, 2061-2063. - Yorisue T. and Watanabe H. (2010): Larval dispersal of hydrothermal vent animals. *Iden*, **64**, 55-59. (頼末武史・渡部裕美 (2010): 深海化学合成生物群集の幼生分散. 生物の科学 遺伝, **64**, 55-59.) - Yoshizawa S., Wada M., Yokota A. and Kogure K. (2010): Vibrio sagamiensis sp. nov., luminous marine bacteria isolated from sea water. The Journal of General and Applied Microbiology, 56, 499-507. - Yoshizawa S., Karatani H., Wada M. and Kogure K. (2010): Allivibrio sifiae sp. nov., luminous marine bacteria. The Journal of General and Applied Microbiology, 56, 509-518. - Yusoff F.M., Nishikawa J. and Kuppan P. (2010): Commercial jellyfish, a little known fishery industry in Malaysia. Fishmail, 18, 8-12. #### Marine Bioscience - Aoyama J. (2010): Genetic analysis. In *Fundamentals of Fish Ecology*, edited by Tsukamoto K., Koseisya-Koseikaku, 87-99. (青山 潤 (2010): 遺伝子解析. 「魚類生態学の基礎」(塚本勝巳編), 恒星社厚生閣, 87-99.) - Boisnier E., Sagawa T., Komatsu T. and Takagi N. (2010): Distinguishing resident from transient species along marine artificial reefs. *Journal of the Marine Biological Association of the United Kingdom*, **90**, 1297-1303. - Breves J.P., Hasegawa S., Yoshioka M., Fox B.K., Davis L.K., Lerner D.T., Takei Y., Hirano T. and Grau E.G. (2010): Acute salinity challenges in Mozambique and Nile tilapia: Differential responses of plasma prolactin, growth hormone and branchial expression of ion transporters. *General and Comparative Endocrinology*, **167**, 135-142. - Chow S., Kurogi H., Katayama S., Ambe D., Okazaki M., Watanabe T., Ichikawa T., Kodama M., Aoyama J., Shinoda A., Watanabe S., Tsukamoto K., Miyazaki S., Kimura S. Yamada Y., Nomura K., Tanaka H., Kazeto Y., Hata K., Handa T., Tawa A. and Mochioka N. (2010): Japanese eel *Anguilla japonica* do not assimilate nutrition during the oceanic spawning migration: evidence from stable isotope analysis. *Marine Ecology Progress Series*, **402**, 233-238. - Hashimoto H., Otsubo H., Fujihara H., Suzuki H., Ohbuchi T., Yokoyama T., Takei Y. and Ueta Y. (2010): Centrally administered ghrelin potently inhibits water intake induced by angiotensin II and hypovolemia in rats. *Journal of Physiological Science*, **60**, 19-25. - Hatase H., Omuta K. and Tsukamoto K. (2010): Oceanic residents, neritic migrants: a possible mechanism underlying foraging dichotomy in adult female loggerhead turtles (*Caretta caretta*). *Marine Biology*, **157**, 1337-1342. - Hirayama M., Mukai T., Miya M., Murata Y., Sekiya Y., Yamashita T., Nishida M., Watabe S., Oda S. and Mitani H. (2010): Intraspecific variation in the mitochondrial genome among local populations of Medaka *Oryzias latipes*. *Gene*, **457**, 13-24. - Hyodo S. (2010): Physiological research in cartilaginous fishes: understanding life cycle with special focus on body fluid regulation. *Report of Japanese Society for Elasmobranch Studies*, **46**, 1-7. (兵藤 晋 (2010): 軟骨魚類の生理学研究:体液調節を中心にライフサイクルを追う. 板鰓類研究会報, **46**, 1-7.) - lida M., Watanabe S. and Tsukamoto K. (2010): Validation of otolith daily increments in the amphidromous goby *Sicyopterus japonicus*, *Coastal Marine Science*, **34**, 39-41. - lida M., Watanabe S., Yamada Y., Lord C., Keith P. and Tsukamoto K. (2010): Survival and behavioral characteristics of amphidromous goby larvae of Sicyopterus japonicus (Tanaka, 1909) during their downstream migration. Journal of Experimental Marine Biology and Ecology, 383, 17-22. - lida M., Zenimoto K., Watanabe S., Kimura S. and Tsukamoto K. (2010): Larval transport of the amphidromous goby *Sicyopterus japonicus* by the Kuroshio Current. *Coastal Marine Science*, **34**, 42-46. - Inoue K. and Koito T. (2010): Studies on mechanisms of adaptation to the sulfide-rich environments in hydrothermal vents through analyses of an amino acid transporter. *Aquabiology*, **32**, 123-128. (井上広滋・小糸智子 (2010): 熱水噴出域への 適応機構をアミノ酸輸送体から探る. 海洋と生物, **32**, 123-128.) - Inoue J.G., Miya M., Miller M.J., Sado T., Hanel R., Hatooka K., Aoyama J., Minegish Y., Nishida M. and Tsukamoto K. (2010): Deep-ocean origin of the freshwater eels. *Biology Letters*, **6**, 363-366. - Kaifu K., Tamura M., Aoyama J. and Tsukamoto K. (2010): Dispersal of yellow phase Japanese eels Anguilla japonica after recruitment in the Kojima Bay-Asahi River system, Japan. Environmental Biology of Fishes, 88, 273-282. - Kawaguchi M., Hiroi J., Miya M., Nishida M., luchi I. and Yasumasu S. (2010): Intron-loss evolution of hatching enzyme genes in Teleostei. *BMC Evolutionary Biology*, 10, 260. - Kawaguchi M., Yasumasu S., Shimizu A., Sano K., luchi I. and Nishida M. (2010): Conservation of the egg envelope digestion mechanism of hatching enzyme in euteleostean fishes. *FEBS Journal*, **277**, 4973-4987. - Kawakami T., Aoyama J. and Tsukamoto K. (2010): Morphology of pelagic fish eggs identified using mitochondrial DNA and their distribution in waters west of the Mariana Islands. *Environmental Biology and Fishes*, **87**, 221-235. - Kawatsu S., Sato K., Watanabe Y., Hyodo S., Breves J.P., Fox B.K., Grau E.G. and Miyazaki N. (2010): A new method to calibrate attachment angles of data loggers in swimming sharks. *EURASIP Journal on Advances in Signal Processing*, 2010, 732586. - Kikuchi M., Sakamoto K.Q. and Sato K. (2010): Acquisition of gliding skills by Weddell seal (*Leptonychotes weddellii*) pups during lactation. *Polar Biology*, **33**, 1429-1435. - Kinoshita M., Zakaria M.P., Ismail A., Yusof S., Boonphakdee C., Boonphakdee T. and Inoue K. (2010): An attempt to detect contamination with estrogenic compounds in river water of urban area in Thailand and Malaysia using transgenic medaka. *Coastal Marine Science*, 34, 216-222. - Kitahashi T., Shimanaga M., Inoue K. and Watanabe H. (2010): Sampler bias in the quantitative study on meiofauna around hydrothermal vents: Comparisons of sediments collected using two types of handcorers with different diameters. **JAMSTEC Report of Research and Development, 10, 33-39. (北橋 倫・嶋永元裕・井上広滋・渡部裕美 (2010): 熱水噴出域 のメイオファウナの定量的研究におけるサンプラーバイアスについて: 内径の異なる2種類のハンドコアラーによる堆積物の比較. JAMSTEC Report of Research and Development, 10, 33-39.) - Kitano J., Lema S.C., Luckenbach J.A., Mori S., Kawagishi Y., Kusakabe M., Swanson P. and Peichel C.L. (2010): Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation. *Current Biology*, **20**, 2124-2130. - Koito T., Morimoto S., Toyohara H., Yoshida T., Jimbo M., Maruyama T., Miyazaki N. and Inoue K. (2010): Decline in taurine transporter mRNA and thioautotrophic bacterial 16S rDNA levels after transplantation of the hydrothermal-vent mussel Bathymodiolus septemdierum to a non-vent position. Cahiers de Biologie Marine, 51, 429-433. - Koito T., Nakamura-Kusakabe I., Yoshida T., Maruyama T., Omata T., Miyazaki N. and Inoue K. (2010): Effect of long-term exposure to sulfides on taurine transporter gene expression in the gill of the deep-sea mussel *Bathymodiolus platifrons*, which harbors a methanotrophic symbiont. *Fisheries Science*, 76, 381-388. - Komaru A., Hori H., Yanase Y., Onouchi K., Kato T., Ishibashi R., Kawamura K., Kobayashi M. and Nishida M. (2010): Mitochondrial 16S rDNA analysis used to distinguish *Corbicula japonica* from Japan and imported species from Korea and China. *Nippon Suisan Gakkaishi*, **76**, 621-629. (古丸 明・堀 寿子・柳瀬泰宏・尾之内健次・加藤 武・石橋 亮・河村功一・小林正裕・西田 睦 (2010): 日本、韓国、中国産シジミ類のmtDNA16S rDNA塩基配列分析による判別. 日本水産学会誌, **76**, 621-629.) - Kon T., Yoshino T. and Nishida M. (2010): Cryptic species of the gobioid paedomorphic genus Schindleria from Palau, western Pacific Ocean. Ichthyological Research, 58, 62-66. - Konno N., Hyodo S., Yamaguchi Y., Matsuda K. and Uchiyama M. (2010): Vasotocin/V2-type receptor/aquaporin axis exists in African lungfish kidney but is functional only in terrestrial condition. *Endocrinology*, **151**, 1089-1096. - Kuroki M., Fukuda N., Yamada Y., Okamura A. and Tsukamoto K. (2010): Morphological changes and otolith growth during metamorphosis of Japanese eel leptocephali in captivity. *Coastal Marine Science*, **34**, 31-38. - Lavoué S., Miya M., Arnegard M.E., McIntyre P.B., Mamonekene V. and Nishida M. (2010): Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergence. *Proceedings of the Royal Society B: Biological Sciences*, 278, 1003-1008. - Lavoué S., Miya M. and Nishida M. (2010): Mitochondrial phylogenomics of anchovies (family Engraulidae) and recurrent origins of pronounced miniaturization in the order Clupeiformes. *Molecular Phylogenetics and Evolution*, **56**, 480-485. - Mabuchi K. (2010): Conservation genetic analysis and evaluation of alien fishes. In *Methods in Conservation Ecology*, edited by Washitani I., Miyashita T., Nishihiro J., and Kadoya T. University of Tokyo Press, Tokyo, 83-100. (馬渕浩司 (2010): 外来魚の保全遺伝学的解析・評価法. 「保全生態学の技法 調査・研究・実践マニュアル」(鷲谷いづみ・宮下 直・西廣 淳・角谷 拓編), 東京大学出版会, 東京, 83-100.) - Mabuchi K., Senou H., Takeshima H., Nakai K. and Nishida M. (2010): Distribution of native Japanese mtDNA haplotypes of the common carp (*Cyprinus carpio*) in Lake Biwa. *Japanese Journal of Ichthyology*, **57**, 1-12. (馬渕浩司・瀬能 宏・武島弘彦・中井克樹・西田 睦 (2010): 琵琶湖におけるコイの日本在来mtDNAハプロタイプの分布. 魚類学雑誌, **57**, 1-12.) - Matsuzaki S.S., Mabuchi K., Takamura N., Hicks B.J., Nishida M. and Washitani I. (2010): Stable isotope and molecular analyses indicate that hybridization with non-native domesticated common carp influence habitat use of native carp. *Oikos*. 119, 964-971. - Miller M.J., D'Avella M.J. and Tsukamoto K. (2010): Enlarged chromatophores in an actively swimming ophichthid leptocephalus observed over deep-water off Kona, Hawaii. *Zoological Studies*, **49**, 324. - Miller M.J., Nakamura Y., Shibuno T. and Tsukamoto K. (2010): Leptocephali collected in light traps near coral reef habitats of Ishigaki Island in the southern Ryuku Island chain. *Coastal Marine Science*, **34**, 47-54. - Minegishi Y. and Tsukamoto K. (2010): Population structure and speciation. In *Fundamentals of Fish Ecology*, edited by
Tsukamoto K., Koseisya-Koseikaku, 42-56. (峰岸有紀・塚本勝巳 (2010): 集団と種分化. 「魚類生態学の基礎」(塚本勝巳編), 恒星社厚生閣, 42-56.) - Miya M., Pietsch T.W., Orr W.J., Arnold R.J., Satoh T.P., Shedlock A.M., Ho H.C., Shimazaki M., Yabe M. and Nishida M. (2010): Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. *BMC Evolutionary Biology*, **10**, 58. - Miyake H., Kitada M., Itoh H., Nemoto S., Okuyama Y., Watanabe H., Tsuchida S., Inoue K., Kado R., Ikeda S., Nakamura K. and Omata T. (2010): Larvae of deep-sea chemosynthetic ecosystem animals in captivity. *Cahiers de Biologie Marine*, 51, 441-450. - Nakada T., Westhoff C.M., Yamaguchi Y., Hyodo S., Li X., Muro T., Kato A., Nakamura N. and Hirose S. (2010): Rhesus glycoprotein p2 (Rhp2) is a novel member of the Rh family of ammonia transporters highly expressed in shark kidney. **Journal of Biological Chemistry**, 285, 2653-2664. - Nishida M. (2010): Molecular phylogenetic approach to the diversity of fishes. In *Marine Natural Resources in the 21st Century*, edited by Tanaka M., Kawai S., Taniguchi N. and Sakata T., Kyoto University Press, Kyoto, 388-410. (西田 睦 (2010): 魚類の多様性を探る: 分子系統学からの挑戦. 「水産の21世紀一海から拓く食料自給」(田中 克・川合真一郎・谷口順彦・坂田 泰造編),京都大学学術出版会,京都, 388-410.) - Nishida M. and Tachihara K. (2010): *Rivers in Okinawa*. In Rivers in Japan, edited by Ogura N., Shimatani, Y. and Tanida K., Asakura Shoten, Tokyo, 154-157. (西田 睦・立原一憲 (2010): 沖縄の川. 「図説 日本の河川」(小倉紀雄・島谷幸宏・谷田一三編)、朝倉書店、東京、154-157.) - Nobata S., Ventura A., Kaiya H. and Takei Y. (2010): Diversified cardiovascular actions of six homologous natriuretic peptides (ANP, BNP, VNP, CNP1, CNP3 and CNP4) in conscious eels. *American Journal of Physiology*, **298**, R1549-R1559. - Otake T.(2010): Otolith analysis. In *Fundamentals of Fish Ecology*, edited by Tsukamoto K., Koseisya-Koseikaku, pp. 100-109. (大 竹二雄(2010): 耳石解析 「魚類生態学の基礎」(塚本勝巳編),恒星社厚生閣,100-109.) - Sagawa T. Boisnier E. Komatsu T. Mustapha K. Hattour A. Kosaka N. and Miyazaki S. (2010): Using bottom surface reflectance to map coastal marine areas: a new application method for Lyzenga's model. *International Journal of Remote Sensing*, 31, 3051-3064. - Saitoh K., Sado T., Doosey M.H., Bart H.L. Jr., Inoue J.G., Nishida M., Mayden R.L. and Miya M. (2010): Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi). *Zoological Journal of the Linnean Society*, 161, 633-662. - Sakai Y., Ochi Y., Tsuboi M., Kadota T., Shimizu N., Shoji J., Matsumoto K., Mabuchi K., Kuniyoshi H., Ohtsuka S. and Hashimoto H. (2010): Fish fauna of shallow waters of Aki Nada, Seto Inland sea, Japan. *Journal of the Graduate School of Biosphere Science, Hiroshima University*, 49, 7-20. (坂井陽一・越智雄一郎・坪井美由紀・門田 立・清水則雄・小路 淳・松本一範・馬渕浩司・国吉久人・大塚 攻・橋本博明 (2010): 瀬戸内海安芸灘の浅海魚類相 ホシササノハベラとホシノハゼの分布に注目して. 広島大学大学院生物圏科学研究科紀要, 49, 7-20.) - Sakamoto K., Sato K., Kato A., Fukui D., Bando G., Naito Y., Habara Y., Ishizuka M. and Fujita S. (2010): Metabolic alkalosis due to feeding chicks in breeding Adélie penguins *Pygoscelis adeliae* under natural conditions. *Physiological and Biochemical Zoology*, **83**, 232-238. - Sato K., Shiomi K., Watanabe Y., Watanuki Y., Takahashi A. and Ponganis P.J. (2010): Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim optimally to minimize cost of transport. *Proceedings of the Royal Society London B* 277, 707-714. - Sato K. (2010): Theoretical implication on swimming speed of aquatic animals. In *Aero-aqua-biomechanics*, edited by Society for Aero-aqua-biomechanics, Morikita Publishing, Tokyo, 43-49. (佐藤克文 (2010): 水棲動物の遊泳速度, 動物の遊泳についての理論的予測. 「エアロアクアバイオメカニクス」(エアロアクアバイオメカニクス研究会編). 森北出版. 東京, 43-49.) - Sato K. (2010): Special issue "Bio-logging science: new method to observe hidden world". *Iden*, 64, 2-5. (佐藤克文 (2010): 特集にあたって「バイオロギングサイエンス―見えない世界を観る科学」. 生物の科学 遺伝, 64, 2-5.) - Sato K. and Katsumata N. (2010): Flight behavior of streaked shearwater, tree-climbing bird. *Iden*, **64**, 42-46. (佐藤克文・勝又信博 (2010): 加速度波形から判別するオオミズナギドリの飛翔行動一樹に登らない"多"水薙ぎ鳥. 生物の科学 遺伝, **64**, 42-46.) - Satoh T.P., Sato Y., Masumaya N., Miya M. and Nishida M. (2010): Transfer RNA gene arrangement and codon usage in vertebrate mitochondrial genomes: a new insight into gene order conservation. *BMC Genomics*, 11, 479. - Shabaka S. and Komatsu T. (2010): Phenology and morphology of the marine phanerogam Zostera caulescens Miki in Funakoshi Bay, northeast Honshu Island, Japan, Coastal Marine Science, 34, 13-23. - Shinoda A. and Tsukamoto K.(2010): Environments. In *Fundamentals of Fish Ecology*, edited by Tsukamoto K., Koseisya-Koseikaku, 1-11. (篠田 章・塚本勝巳 (2010): 環境.「魚類生態学の基礎」(塚本勝巳編), 恒星社厚生閣, 1-11.) - Shiomi K., Narazaki T., Sato K., Shimatani K., Arai N., Ponganis P.J. and Miyazaki N. (2010): Data-processing artefacts in three-dimensional dive path reconstruction from geomagnetic and acceleration data. *Aquatic Biology*, **8**, 299-304. - Takada, M., Tachihara, K., Kon, T., Yamamoto, G., Iguchi, I., Miya, M. and Nishida, M. (2010): Biogeography and evolution of the *Carassius auratus*-complex in East Asia. *BMC Evolutionary Biology*, **10**, 7. - Takada M., Tachihara K. and Nishida M. (2010): Simple and easy method using multiplex PCR for distinguishing between Ryukyuan domestic and introduced *Carassius auratus*. *Fish Genetics and Breeding Science*, **39**, 109-114. (高田未来美・立原一憲・西田 睦 (2010): Multiplex PCRを用いた琉球列島在来フナと移植フナの簡易判別法、水産育種、**39**, 109-114.) - Takada M., Tachihara K. and Nishida M. (2010): Distribution and habitats of *Carassius auratus* in the Ryukyu Archipelago: comparisons between indigenous and introduced populations. *Japanese Journal of Ichthyology*, **57**, 113-123. (高田未来美・立原一憲・西田 睦 (2010): 琉球列島におけるフナの分布と生息場所: 在来フナと移植フナの比較. 魚類学雑誌, **57**, 113-123.) - Takei Y. and Loretz C.A. (2010): The gastrointestinal tract as an endocrine, paracrine and autocrine organ. In Fish Physiology, Vol. 30, The Multifunctional Gut of Fish, edited by Grosell M., Farrell A.P. and Brauner C.J., Academic Press, San Diego, 261-317. - Tsukamoto K.(2010): Migration. In *Fundamentals of Fish Ecology*, edited by Tsukamoto K., Koseisya-Koseikaku, 57-72. (塚本勝巳 (2010): 回遊. 「魚類生態学の基礎」(塚本勝巳編), 恒星社厚生閣, 57-72.) - Tsukamoto K. (ed.) (2010): *Fundamentals of Fish Ecology*. Kouseisya-Kouseikaku, Tokyo, 320pp. (塚本勝巳(編著) (2010): 魚類生態学の基礎. 恒星社厚生閣, 東京, 320pp.) - Watanabe S.(2010): Morphological observation. In *Fundamentals of Fish Ecology*, edited by Tsukamoto K., Koseisya-Koseikaku, 73-86. (渡邊 俊 (2010): 形態観察. 「魚類生態学の基礎」(塚本勝巳編), 恒星社厚生閣, 73-86.) - Watanabe S., Jang-Liaw N.- H., Chen C.-Y., Yeh H.- M., Ai B., Otake T., Iida M. and Tsukamoto K. (2010): An albino specimen of *Sicyopterus japonicas* (Tanaka) collected in Taiwan. *Nankiseibutu*, **52**, 33-36. (渡邊 俊・張廖年鴻・陳 静怡・葉 信明・阿井文瓶・大竹二雄・飯田 碧・塚本勝巳 (2010): 台湾から採集されたボウズハゼ (*Sicyopterus japonicus*) のアルビノ個体. 南紀生物, **52**, 33-36.) - Watanuki Y., Takahashi A. and Sato K. (2010): Individual variation of foraging behavior and food provisioning in Adélie penguins (Pygoscelis adeliae) in a fast-sea-ice area. Auk, 127, 523-531. - Watanuki Y., Takahashi A., Trathan P.N., Wanless S., Sakamoto K.Q. and Sato K. (2010): Regulation of wing or foot strokes in deep-diving seabirds: a comparison between South Georgian Shag, Common Murre and Macaroni Penguin. *Japanese Journal of Ornithology*, **59**, 20-30. (綿貫 豊・高橋晃周・Trathan P.N.・Wanless S.・坂本健太郎・佐藤克文 (2010): 深く潜水 する海鳥のストローク調節: サウスジョージアムナジロヒメウ・ウミガラス・マカロニペンギンの比較. 日本鳥学会誌, **59**, 20-30.) - Yada T., Tsuruta T., Sakano H., Yamamoto S., Abe N., Takasawa T., Yogo S., Suzuki T., Iguchi K., Uchida K. and Hyodo S. (2010): Changes in prolactin mRNA levels during downstream migration of the amphidromous teleost, ayu *Plecoglossus altivelis*. General and Comparative Endocrinology, 167, 261-267. - Yamamoto G., Takada M., Iguchi K. and Nishida M. (2010): Genetic constitution and phylogenetic relationships among Japanese crucian carps (*Carassius*). *Ichthyological Research*, **57**, 215-222. - Yamamoto T., Takahashi A., Katsumata N., Sato K. and Trathan P.N. (2010): At-sea distribution and behavior of streaked shearwaters (*Calonectris leucomelas*) during non-breeding period. *Auk*, 127, 871-881. - Yamane K., Shirai K., Nagakura Y., Yamaguchi M., Takita A., Horii T., Tanaka N., Yamane S., Arai T. and Otake T. (2010): Spatial variation in otolith elemental composition of the Pacific herring *Clupea pallasii* in northern Japan. *Aquatic Biology*, **10**, 283-290. - Yamanoue Y., Mabuchi K., Sawai E., Sakai Y., Hashimoto H. and Nishida M. (2010): Multiplex PCR-based genotyping of mitochondrial DNA from two species of ocean sunfish from the genus *Mola* (Tetraodontiformes: Molidae) found in Japanese waters. *Japanese Journal of Ichthyology*, **57**, 27-34. (山野上祐介・馬渕浩司・澤井悦郎・坂井陽一・橋本博明・西田 睦 (2010): マルチプレックスPCR法を用いた日本産マンボウ属2種のミトコンドリアDNA の簡易識別法. 魚類学雑誌, **57**, 27-34.) ### **Living Marine Resources** - Hayakawa J., Kawamura T., Ohashi S., Horii T. and Watanabe Y. (2010): Importance of epiphytic diatoms and fronds of two species of red algae as diets for juvenile Japanese turban snail *Turbo cornutus*. *Journal of Shellfish Research*, 29, 233-240. - Hiramatsu K. (2010): Stock and recruitment relationships and their implications for fisheries stock management. *Kaiyo monthly*, 42, 199-203. (平松一彦 (2010): 再生產関係と水產資源管理, 月刊海洋, 42, 199-203.) - Hiramatsu K. (2010): Statistical problems of estimating stock and recruitment relationship. *Kaiyo monthly*, **42**, 204-208. (平松一彦 (2010): 再生產関係推定の統計学的問題. 月刊海洋, **42**, 204-208.) - Hoshino K., Okamoto M., Saruwatari T., Oohra I. and Yanagimoto T. (2010): Fish specimen collection of Fisheries Research Agencey-its application to DNA research and tasks. *DNA Polymorphism*, 18, 131-134. (星野浩一・岡本 誠・猿渡敏郎・大原一郎・柳本 卓 (2010): 水産総合研究センターの魚類標本コレクション-DNA研究への活用と課題. DNA多型, 18, 131-134.) - Hurtado-Ferro F., Hiramatsu K. and Shirakihara K. (2010): Allowing for environmental effects in a management
strategy evaluation for Japanese sardine. *ICES Journal of Marine Science*, **67**, 2012-2017. - Kanaji Y., Kishida M., Watanabe Y., Kawamura T., Xie S., Yamashita Y., Sassa C. and Tsukamoto Y. (2010): Variations in otolith patterns. sizes and body morphometrics of jack mackerel *Trachurus japonicus* juveniles. *Journal of Fish Biology*, 77, 1325-1342. - Katukawa Y. and Watanabe Y. (2010): Fisheries-induced life history evolution. *Bulletin of the Japanese Society of Fisheries Oceanography*, 74, 84-89. (勝川木綿・渡邊良朗 (2010): 選択的漁獲による生活史の進化. 水産海洋研究, 74, 84-89.) - Katsumata K. and Yasuda I. (2010): Estimate of non-tidal exchange transport between the Sea of Okhotsk and the North Pacific. *Journal Oceanography*, **66**, 489-504. - Kidokoro H., Hiramatsu K. and Sakai M. (2010): An overview of a symposium on the current states and problems of stock-recruitment relationships in fisheries stock assessment: from theoretical and application viewpoints. *Kaiyo monthly*, 42, 193-198. (木所英昭・平松一彦・酒井光夫 (2010): 水産資源管理における再生産関係利用の現状と問題点一理論的・実用的立場から一、月刊海洋 42, 193-198.) - Kimura S., Kato Y., Kitagawa T. and Yamaoka N. (2010): Impacts of environmental variability and global warming scenario on Pacific bluefin tuna (*Thunnus orientalis*) spawning grounds and recruitment habitat. *Progress in Oceanography*, **86**, 39-44. - Kishida M., Kanaji Y., Xie S., Watanabe Y., Kawamura T., Masuda R. and Yamashita Y. (2010): Ecomorphological dimorphism of juvenile *Trachurus japonicus* in Wakasa Bay, Japan. *Environmental Biology of Fishes*, **90**, 301-315. - Kitagawa T., Kato Y., Miller M.J., Sasai Y., Sasaki H. and Kimura S. (2010): The restricted spawning area and season of Pacific bluefin tuna facilitate use of nursery areas: A modeling approach to larval and juvenile dispersal processes. *Journal of Experimental Marine Biology and Ecology*, **393**, 23-31. - Kitagawa T. (2010): Trans-oceanic migration of the Pacific bluefin tuna. In *Fisheries in the 21st century*, edited by Tanaka M., Kawai S., Taniguchi N. and Sakata T., Kyoto University Press, 411-412. (北川貴士 (2010): クロマグロの渡洋回遊. 「水産の21世紀一海から拓く食料自給」 (田中 克・川合真一郎・谷口順彦・坂田泰造編),京都大学出版会,411-412.) - Kurota H., Hiramatsu K., Takahashi N., Shono H., Itoh T. and Tsuji S. (2010): Developing a management procedure robust to uncertainty for southern bluefin tuna: a somewhat frustrating struggle to bridge the gap between ideals and reality. *Population Ecology*, 52, 359-372. - Miyake Y., Kimura S., Kawamura T., Kitagawa T., Hara M. and Hoshikawa H. (2010): Estimating larval supply of ezo abalone *Haliotis discus hannai* in a small bay using a coupled particle-tracking and hydrodynamic model: insights into the establishment of harvest refugia. *Fisheries Science*, **76**, 561-570. - Nakayama Y. and Hiramatsu K. (2010): Evaluation of the reliability of VPA used for stock assessment for TAC species. *Nippon Suisan Gakkaishi*, **76**, 1043-1047. (中山洋輔・平松一彦 (2010): TAC対象種の資源評価に用いられるVPAの信頼性の検討. 日本水産学会誌, **76**, 1043-1047.) - Okamoto M., Watanabe Y. and Asahida T. (2010): A larva of the skilfish, *Erilepis zonifer* (Actinopterygii: Scorpaeniformes: Anoplopomatidae), from off Northeastern Japan. *Species Diversity*, **15**, 125-130. - Oohara I., Hoshino K., Takahashi Y., Kobayashi K., Saito K., Shigenobu H. and Saruwatari T. (2010): Species identification of 6 *Decapterus* species using site-Specifica PCR. *DNA Polymorphism*, 18, 98-101.(大原一郎・星野浩一・高嶋康晴・小林敬典・斎藤憲治・重信裕弥・猿渡敏郎 (2010): Site-Specific PCRを用いたムロアジ属6種の種判別. DNA多型, 18, 98-101.) - Onitsuka T., Kawamura T. and Horii T. (2010): Reproduction and early life ecology of abalone *Haliotis diversicolor* in Sagami Bay, Japan. *Japan Agricultural Research Quarterly*, 44, 375-382. - Onitsuka T., Kawamura T., Ohashi S., Iwanaga S. and Horii T. (2010): Dietary value of gametophytes and juvenile sporophytes of the brown macroalga *Eisenia bicyclis* for juvenile abalone *Haliotis diversicolor*. *Fisheries Science*, **76**, 619-623. - Onitsuka T., Kawamura T., Ohashi S., Iwanaga S., Horii T. and Watanabe Y. (2010): Effects of delayed metamorphosis and delayed post-settlement feeding on post-larval survival and growth of the abalone *Haliotis diversicolor*. Aquaculture, 298, 239-244. - Osafune S. and Yasuda I. (2010): Bidecadal variability in the Bering Sea and the relation with 18.6year period nodal tidal cycle. *Journal Geophysical Research*, 115, C02014. - Saruwatari T. (2010): Debunking an urban legend of the Deep Sea: The Queen of the Abyss and her contribution to Ceratioid Anglerfish bilogy. *Proceedings of an International Symposium*, *Into the Unknown Researching Mysterious Deep-sea Animals*, 2007, Okinawa, Japan., 128-13. - Saruwatari T. (2010): Salangids. In *A dictionary of wildlife conservation*, edited by Wildlife Conservation Society, Asakurashoten, 621-623. (猿渡敏郎 (2010): シラウオ類. 「野生動物保全の事典」(野生生物保護学会編), 朝倉書店, 621-623.) - Shirakihara K. (2010): Management of demersal fish resources in the East China Sea and Yellow Sea. Memoirs of a Conference for Forecasting Oceanic and Fishing Conditions in the East China Sea and the Western Japan Sea (Seikai Block), 18, 1-7. (白木原国雄 (2010): 東シナ海・黄海の底魚管理を巡る諸問題. 西海ブロック漁海況調査研究報告, 18, 1-7.) - Tanaka H., Saruwatari T. and Minami T. (2010): Larval development of two *Artegatis* species (Decapoda, Xanthidae) describerd from laboratory reared material. *Crustacean Research*, **39**, 11-35. - Tanaka Y., Hibiya T. and Niwa Y. (2010): Assessment of the Effects of Tidal Mixing in the Kuril Straits on the Formation of the North Pacific Intermediate Water. *Journal of Physical Oceanography*, **40**, 2569-2574. - Tanaka Y., Hibiya T., Niwa Y. and Iwamae N.(2010): Numerical study of K1 internal tides in the Kuril straits, *Journal of Geophysical Research*, **115**, C09016. - Tatebe H., Yasuda I., Saito H. and Shimizu Y. (2010): Horizontal transport of the calanoid copepod *Neocalanus* in the North Pacific: The influences of the current system and the life history. *Deep-Sea Research Part I.* 57, 409-419. - Watanabe Y. (2010): Fluctuation in catches of small pelagic fishes. *Aquanet*, **2010-12**, 16-22. (渡邊良朗 (2010): 多獲性浮魚類 の漁獲量変動. アクアネット, **2010-12**, 16-22.) - Watanabe Y. (2010): Regime shift around 1970. *Kaiyo Monthly*, **42**, 387-388. (渡邊良朗 (2010): 1970年前後のレジームシフト. 月 刊海洋, **42**, 387-388.) - Watanabe Y. (2010): Stoch fluctuation of the Pacific saury around 1970. Kaiyo Monthly, 42, 387-388. (渡邊良朗 (2010): 1970 年前後のサンマ資源の変動. 月刊海洋, 42, 387-388.) - Watanabe Y. (2010): Population fluctuations, In *Fundamental ecology of fishes*, edited by Tsukamoto K., Koseisha Koseikaku, Tokyo, 287-298. (渡邊良朗 (2010). 個体数変動. 「魚類生態学の基礎」(塚本勝巳編), 厚生社恒星閣, 東京, 287-298.) - Won N.I., Kawamura T., Takami H. and Watanabe Y. (2010): Stable isotope analyses as a tool to examine post-larval diets of Haliotis discus hannai, Journal of Shellfish Research, 29, 655-662. - Won N.-I., Kawamura T., Takami H. and Watanabe Y. (2010): Ontogenetic changes in the feeding habits of an abalone *Haliotis discus hannai*: field verification by stable isotope analyses. *Canadian Journal of Fisheries and Aquatic Sciences*, 67, 347-356. - Yasuda I. (2010): Variability in the Kuroshio and the Oyashio around 1970. *Kaiyo monthly*, **42**, 389-394. (安田一郎 (2010): 1970年前後の黒潮·親潮変動. 月刊海洋, **42**, 389-394.) Yasuda I., Itoh S. and Nishikawa H. (2010): Japanese sardine Sardinops melanostictus around formation regions of North Pacific Subtropical Mode Water. *Aquabiology*, **32**, 226-231. (安田一郎・伊藤幸彦・西川 悠 (2010): 北太平洋亜熱帯モード 水海域とマイワシ. 海洋と生物, **32**, 226-231.) #### Multiple Field Marine Science - Ariji T., Yagi T., Nadaoka K., Nakagawa Y., Ogawa H., Simosako K. and Kimua S. (2010): Temporal and spatial variations of bottom sediment the Tama River mouth in Tokyo Bay. *Journal of Japan Society of Civil Engineers*, Ser. B2, **66**, 1401-1405. (有路隆一・八木 宏・灘岡和夫・中川康之・小川浩史・下追健一郎・木村俊介 (2010): 東京湾多摩川河口周辺域における底質環境の時空間変動特性. 土木学会論文集B2 (海岸工学), **66**, 446-450.) - Dobrzhinetskaya L.F., Green II H.W., Takahata N., Sano Y. and Shirai K. (2010): Crustal signature of δ¹³C and nitrogen content in microdiamonds from Erzgebirge, Germany: Ion microprobe studies. *Journal of Earth Science*, **21**, 623-634. - Filippi J.-B., Komatsu T. and Tanaka K. (2010): Simulation of drifting seaweeds in East China Sea. *Ecological Informatics*, 5, 67-72. - Furutani H., Meguro A., Iguchi H. and Uematsu M. (2010): Geographical distribution and sources of phosphorus in atmospheric aerosol over the North Pacific Ocean. *Geophysical Research Letters*, **37**, L03805. - Griessbaum, F., Moat, B. I., Narita, Y., Yelland, M. J., Klemm, O., and Uematsu, M. (2010): Uncertainties in wind speed dependent CO₂ transfer velocities due to airflow distortion at anemometer sites on ships. *Atmospheric Chemistry and Physics*, **10**. 5123-5133. - Hasegawa T., Kasai H., Ono T., Tsuda A. and Ogawa H. (2010): Dynamics of dissolved and particulate organic matter during the spring bloom in the Oyashio region of the western subarctic Pacific Ocean. *Aquatic Microbial Ecology*, **60**, 127-138. - Kameyama S., Tanimoto H., Inomata S., Tsunogai U., Ooki A., Takeda S., Obata H., Tsuda A. and Uematsu M. (2010): High-resolution measurement of multiple volatile organic compounds dissolved in seawater using equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS). *Marine Chemistry*, 122, 59-73. - Karube Z., Sakai Y., Takeyama T., Okuda N., Kohzu A., Yoshimizu C., Nagata T. and Tayasu I. (2010): Carbon and nitrogen stable isotope ratios of macroinvertebrates in the littoral zone of Lake Biwa as indicators of anthropogenic activities in the watershed. *Ecological Research*, 25, 847-855. - Kurihara M.K., Kimura M., Iwamoto Y., Narita Y., Ooki A., Young-Joon Eum Y.-J., Tsuda A., Suzuki K., Tani Y., Yokouchi Y., Uematsu M., and Hashimoto S. (2010): Linkage between ocean and air in short-lived iodocarbons and oceanic distributions of biogenic trace gases in the western North Pacific. *Marine Chemistry*, 118, 156-170. - Le D.Q., Chino N., Shirai K. and Arai T.
(2010): Trace metals in Japanese eel *Anguilla japonica* in relation to ecological migratory types and growth stages. Estuarine, *Coastal and Shelf Science*, **87**, 405-410. - Maruo M., Nagaoka K., Kobayashi I., Kozawa K. and Obata H. (2010): Reexamination of optimum pH condition for the determination of dissolved iron(II) in aquatic environments using colorimetric reagents. *Bunseki Kagaku*, **59**, 1143-1147. (丸尾雅啓・永岡一樹・小林一星・小沢佳那子・小畑 元 (2010): 水圏試料中微量溶存鉄(II)の比色定量における至適pH条件に関する再検討. 分析化学, **59**, 1143-1147.) - Maruo M., Tate K., Ohta K., Hayakawa K. and Obata H. (2010): Vertical distribution of iron(II) and its relation to organic substances in Lake Biwa, Japan. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie, 30, 1379-1383. - Michida Y. (2010): Some issues toward future management of oceanographic data and information. *Kaiyo monthly Ex.*, **53**, 17-24. (道田 豊 (2010): 海洋データ・情報管理をめぐる課題と取り組み. 月刊海洋, 号外**53**, 17-24.) - Ohte N., Tayasu I., Kohzu A., Yoshimizu C., Osaka K., Makabe A., Koba K., Yoshida N. and Nagata T. (2010): Spatial distribution of nitrate sources of rivers in the Lake Biwa watershed, Japan: Controlling factors revealed by nitrogen and oxygen isotope values. *Water Resources Research*, 46, W07505. - Okano T., Yagi H., Nakayama A., Adachi K., Takeda M., Matsumura S., Takagi T., Ito J. and Ogawa H. (2010): Field observation of particle organic matter around the artificial upwelling producing structure. *Journal of Japan Society of Civil Engineers*, Ser. B2, **66**, 1401-1405. (岡野崇裕・八木 宏・中山哲嚴・足立久美子・武田真典・松村繁徳・高城隆昌・伊藤純一・小川浩史 (2010): 湧昇マウンド礁周辺における懸濁態有機物に関する現地観測. 土木学会論文集B2 (海岸工学), **66**, 1401-1405.) - Ooki A., Tsuda A., Kameyama S., Takeda S., Itoh S., Suga T., Tazoe H., Okubo A. and Yokouchi Y. (2010): Methyl halides in surface seawater and marine boundary layer of northwest Pacific. *Journal Geophysical Research Oceans*, 115, C10013. - Osaka K., Ohte N., Koba K., Yoshimizu C., Katsuyama M., Tani M., Tayasu I. and Nagata T. (2010): Hydrological influences on spatiotemporal variations of d¹⁵N and d¹⁸O of nitrate in a forested headwater catchment in central Japan: Denitrification plays a critical role in groundwater. *Journal of Geophysical Research Biogeosciences*, **115**, G02021. - Tanaka K., Michida Y. and Komatsu T. (2010): Impact of sporadically enhanced river discharge on the climatological distribution of river water in Suruga Bay. *Coastal Marine Science*, **34**, 1-6. - Uematsu M., Hattori H., Nakamura T., Narita Y., Jung J., Matsumoto K., Nakaguchi, Y. and Kumar D. (2010): Atmospheric transport and deposition of anthropogenic substances from the Asia continent to the East China Sea. *Marine Chemistry*, 120, 108-115. #### その他(教科書・事典・絵本) - 竹井祥郎・津田 敦・兵藤 晋 (分担執筆) (2010):石川 統ほか, 生物学辞典, 東京化学同人, 東京. - 木村龍治・新野 宏・(分担執筆:伊賀啓太)(2010):身近な気象学, 財団法人 放送大学教育振興会, 東京. - 中島映至・関口美保(分担執筆)(2010): 光と地球環境. 「からだと光の事典」(太陽紫外線防御研究委員会編), 朝倉書店. - 佐藤克文・平子真理 (2010) べんぎんぺんぎんドボンドボン, 月刊予約絵本 ちいさなかがくのとも, 福音館書店, 東京. # 東京大学 大気海洋研究所 Atmosphere and Ocean Research Institute, The University of Tokyo # www.aori.u-tokyo.ac.jp # 東京大学大気海洋研究所 # ATMOSPHERE AND OCEAN RESEARCH INSTITUTE THE UNIVERSITY OF TOKYO 住 所 / Address 〒277-8564 千葉県柏市柏の葉5-1-5 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 JAPAN URL www.aori.u-tokvo.ac.ip # 発 行:2012年2月20日 東京大学大気海洋研究所 Published in 2012.2.20 by Atmosphere and Ocean Research Institute, The University of Tokyo 編 集:東京大学大気海洋研究所 広報委員会 西田 睦(広報委員長)、小川浩史(出版編集小委員会)、広報室 Edited by Public Relations Committee, Atmosphere and Ocean Research Institute, The University of Tokyo NISHIDA, Mutsumi / OGAWA, Hiroshi / Public Relations Office