海洋生命 システム研究<u>系</u>

海洋生態系動態部門

浮遊生物分野

Division of Marine Life Science,

Department of Marine Ecosystems Dynamics, Marine Planktology Section

プランクトン(浮遊生物)は熱帯から極域、表層から1万メートル を超える超深海まで、あらゆる海洋環境に生息しています。そこで は1ミクロンに満たない微小な藻類から数メートルを超えるクラゲ の仲間まで、多種多様な生き物が相互に関係を持ちつつも独自 の生活を送っています。これらプランクトンは、各々の生活を通じて 基礎生産や高次食物段階へのエネルギー転送、さらには深海へ の物質輸送の担い手として、海洋の生物生産と物質循環過程に 重要な役割を果たしています。また、地球温暖化や海洋酸性化等 地球規模の環境変動や漁業等人間活動による海洋生態系の擾 乱が、プランクトン群集構造や生産を変化させていることが明ら かになってきました。

本分野では、海洋プランクトンおよびマイクロネクトンについて、 種多様性とそれらの進化を明らかにすると共に、食物網動態およ び物質循環における役割の解明を目指しています。この目的のた め、日本沿岸、亜寒帯・亜熱帯太平洋、インド洋、南極海等の幅広 い海域をフィールドとし、生理・生態、種の生活史と個体群動態、 群集の時空間変動、分子生物学的手法を用いた種間系統関係、 漁業生産および物質循環にはたす機能等について研究を進めて います。また、地球規模での環境変動に対するプランクトン群集の 応答については、国際的・学際的協力のもとに研究航海や国内学 の沿岸域での観測・実験を行い、研究を進めています。

現在の主な研究テーマ

●海洋生態系の種多様性と食物網

分子生物学的手法を用いて、全球レベルの多様性や被食ー 捕食関係を把握することを目標としています。

●分子生物学的手法を用いた主要動物プランクトンの分布、生活 史の解明

今まで同定できなかった卵や幼生を分子生物学的手法で同 定し、全生活史を解明します。

●分類体系の再検討

形態分類と分子生物学的手法を駆使し、動物プランクトンの 分類体系の再検討を行っています。

●新たなの生物モニタリング手法の開発

遺伝子発現解析によりプランクトンの環境ストレスに対する 生理応答を把握する手法開発を進めています。

●水中撮像システムを用いたプランクトンの生態研究 ネット採集では明らかに出来ないプランクトンの微細分布や 行動を画像解析から明らかにします。

●津波の沿岸低次生態系への影響に関する研究 東北地方太平洋沖地震による津波が沿岸域のプランクトン群 集に与えた影響とその後の変化過程を明らかにします。

TSUDA, A.

NISHIBE, Y.

The world ocean is dominated by various drifting organisms referred to as plankton. While each plankton species is unique in its morphology, ecology, and evolutionary history, each also has various relationships with co-occurring species and its environment, and plays major roles in biological production and biogeochemical cycles in the ocean. In recent years, it has become apparent that global-scale environmental changes and disruptions to marine ecosystems by human activities are closely linked to changes in plankton communities. Our laboratory focuses on investigating marine plankton and micronekton to understand their biology, ecology, and roles in biogeochemical cycles in the ocean.

Ongoing Research Themes

- •Species diversity and food web structures in marine ecosystems: Molecular techniques reveal the basin-scale patterns of biodiversity and prey-predator relationships.
- •Life history of zooplankton: Molecular techniques together with field observation reveal egg to adult life histories of important species of zooplankton.
- Taxonomic re-examination of zooplankton: Taxonomic uncertainty of zooplankton are investigated using morphological and molecular analysis.
- Development of a novel bio-monitoring method: We try to develop a novel method to monitor physiological responses of plankton to environmental stresses using gene expression analysis.
- Application of underwater imaging system for plankton studies: Optical sampling enables the direct observation of plankton behavior in the filed.
- Impact of the great tsunami on coastal pelagic ecosystem in Tohoku area: We investigate the effects of the tsunami on the ecosystem and recovery processes from the disturbance.

研究船白鳳丸でのプランクトン採集 Plankton sampling on the R/V Hakuho Maru

教授 Professor 准教授 Associate Professor 助教 Research Associate 津田 敦 TSUDA, Atsushi 西部 裕一郎 NISHIBE, Yuichiro 平井 惇也 HIRAI, Junya

44 CATALOG ATMOSPHERE AND OCEAN RESEARCH INSTITUTE 2020

海洋生命 システム研<u>究系</u>

海洋生態系動態部門

微生物分野

Division of Marine Life Science,

Department of Marine Ecosystems Dynamics, Marine Microbiology Section

海洋生態系はさまざまな種類の生物から構成されています。そ のなかで、細菌は原核生物という生物群に属し、この地球上に最 も古くから生息してきた一群です。海洋の大部分は高塩分、低栄 養、低温、高圧で特徴づけられますが、海洋細菌はこれらの環境 に適応した生理的特性を持つことによってあらゆる海域に分布す るとともに、細菌同士あるいは高等動植物とさまざまな相互作用 を行い、海洋生物圏の多様性創出の担い手となっています。

また、細菌は分解者として、さまざまな有機物を最終的に水と 二酸化炭素に変換します。懸濁態の有機物は細菌以外の動物も 餌として使うことができますが、溶存態の有機物を利用できるの は細菌だけです。海洋の溶存態有機物は地球上の炭素のリザー バーとしても極めて大きいので、細菌の機能を理解することは、地 球全体の炭素循環の解明にとって重要です。

本分野では、多様な海洋細菌の生物的特性と生態系における 機能を、分子生物学的手法、最新の光学的手法、斬新な方法論 を導入することによって解析していくことを目指しています。

現在の主な研究テーマ

●海洋細菌の現存量、群集構造、メタゲノム解析

次世代シークエンサーを含めた最新の解析ツールを用いて、海洋 構造や場に応じた群集構造の特徴やその変動機構の解明、特 定機能グループや機能遺伝子の分布と定量に関する研究を行っ ています。

●高機能群集の統合的解析

海洋細菌群集は生息する海域や場に応じて特定の機能グループ が高い活性を持ち、物質循環に大きな役割を果たしています。それ らの群集を特異的に検出する手法を活用し、環境データと統合し ながらその貢献を定量的に明らかにしています。また、窒素代謝、 光利用などの特定機能を持った群集を対象にして培養法を併用 しながら解析を行っています。

●海表面マイクロ層とエアロゾルの微生物動態解析

海表面マイクロ層(sea surface microlayer: SML)は海の極表層 1mm以下の厚さに相当する層を指し、大気と海洋の境界面にあた る領域です.海洋の生物活動による気候システムへのフィードバッ クを制御する鍵として、海表面マイクロ層とそこから生成するエア ロゾルにおける微生物動態に注目し、独自のサンプリング装置と 最新の環境DNA/RNA解析技術を駆使して、微生物群集の組 成と機能を解析しています。 Marine ecosystems consist of diverse groups of living organisms. Bacteria or prokaryotes appeared on Earth first. Most of the ocean is characterized by high salinities, low nutrients, low temperatures, and high pressures. Through Earth history, marine bacteria have evolved to adapt to such physicochemical factors, and have become distributed throughout the ocean. In addition, bacteria have developed various interactions with both other bacteria and higher organisms. These interactions have also contributed to species enrichment on Earth. Bacteria, known as degraders, convert organic matter into water and carbon dioxide. Although particulate organic matter can be consumed by animals, Dissolved Organic Matter (DOM) is utilized solely by bacteria. As DOM is one of the largest global reservoirs of organic materials, clarification of bacterial functions is of primary importance in understanding the mechanisms of the global carbon cycle.

The Microbiology Group seeks to clarify the biological characteristics, functions, and ecological contributions of marine bacteria by introducing new approaches in combination with molecular techniques and newly developed optical devices.

Ongoing Research Themes

- Biomass, community structure and metagenomic analyses of marine prokaryotes
- Integrated research on prokaryotic group with high activity and functions
- Microbial community dynamics in sea surface microlayer and sea spray aerosols

原子間力顕微鏡で観察した海洋細菌 An Atomic Force Microscopy (AFM) image of a marine bacterium

HAMASAKI, K.

SHIOZAKI, T.

NISHIMURA, M.

教授 Professor 准教授 Associate Professor 助教 Research Associate 濵崎 恒二 HAMASAKI, Koji 塩崎 拓平 SHIOZAKI, Takuhei 西村 昌彦 NISHIMURA, Masahiko

海洋生態系動態部門

底生生物分野

Division of Marine Life Science,

Department of Marine Ecosystems Dynamics, Marine Benthology Section

本分野では、潮間帯から深海に至る海底の生態系および底 生生物(ベントス)を対象とし、様々な角度から研究を行っていま す。現在の主な研究テーマは、深海ベントスの多様性と生物地 理、深海化学合成生物群集の進化と生態、底魚の集団遺伝解 析に基づく日本海の生命進化史、干潟動物の分布と生態、海と 川を行き来する両側回遊動物の自然史などです。こうした研究 は、海洋生物集団の形成史を明らかにするのみでなく、将来の 地球環境変動が海洋生態系に及ぼす影響の予測にも役立つと 期待しています。

現在の主な研究テーマ

●熱水・湧水域を含む深海性ベントスの進化と生態

深海底の熱水噴出域や湧水域で観察される化学合成生物群 集は、還元環境に高度に適応した固有の動物群から構成されて おり、深海生物の進化を理解する上で絶好の研究対象です。私 たちは、DNA塩基配列と形態の比較に基づき、巻貝類を中心と した様々な動物群の起源と進化、分布、集団構造などを検討し ています。またその分散機構を理解するために、プランクトン幼 生の飼育を含む初期生態研究を実施しています。

●日本海の海洋生命史

日本海は、狭く浅い海峡によって周囲の海域から隔てられた半 閉鎖的な縁海です。最終氷期の最盛期には、海水準の低下と 大陸からの多量の淡水流入により環境が悪化し、多くの海洋生 物が絶滅したとされています。私たちは、底魚類や巻貝類の遺 伝的解析により、こうした日本海の環境変動が生物の進化や集 団構造にどのような影響を与えてきたかを検討しています。

●干潟に生息する巻貝類の集団構造

沿岸環境浄化の場であり、高い生物多様性を持つ日本の干潟 は、近年の埋め立てや海洋汚染で大きく衰退してしまいました。 私たちは、干潟生態系の多様性を保全するための基礎データ収 集を目的に、巻貝類を対象とした分布調査と集団の遺伝学的特 性の解析をおこなっています。また、温暖化が集団構造に及ぼす 影響や、底生生物が環境浄化に果たす役割を研究しています。

●両側回遊性貝類の自然史

川にすむ巻貝のなかには、幼生期に海へ出て分散する両側回遊 型の生活環をもつものがあります。インド・西太平洋の低緯度域 島嶼では、このような両側回遊種が卓越し、また高い種多様性 を示します。私たちは、熱帯島嶼における河川動物相の成立と 維持機構の解明にむけ、これら巻貝の分布、遺伝的・形態的多 様性、種分類、系統進化、行動・生態、初期発生と分散について 多角的な研究を進めています。 Deep-sea reducing environments including hydrothermal vent fields and cold seep areas harbor faunal communities with an extraordinary large biomass that depend on primary production by chemosynthetic bacteria. As most animal species of the chemosynthesis-based communities are endemic and highly adapted to the specific conditions, they provide unique opportunities to investigate evolutionary processes, adaptation and dispersal in the deep sea. Our current studies on these animals include genetic population analyses and species- and higher-level phylogenies based on mitochondrial and nuclear gene sequences. We are also studying the early development and dispersal mechanisms of the vent endemics and other deep-sea species by rearing pelagic larvae and analyzing the chemical composition of gastropod shells.

The Sea of Japan is a semi-closed sea connected with neighboring seas by shallow and narrow straits and thought to have experienced environmental deterioration during the last glacial maximum. In order to evaluate the effects of past climatic changes on marine ecosystems, we are comparing the genetic population structures of various benthic animals along Japanese coasts. Another research focus in our research section is the biogeography of snails on tidelands — a marine environment that has been severely damaged by reclamation and pollution. Obtained results would provide significant implications to the estimation of future environmental changes.

Ongoing Research Themes

- Evolution and ecology of deep-sea gastropods, including hydrothermal vent endemics
- Early development and larval dispersal of benthic invertebrates
- Evolutionary history of benthic animals in the Sea of Japan
- Biogeography of tideland snails
- Natural history of amphidromous snails

研究船白鳳丸でのトロール作業 Sampling of deep-sea benthic animals using a trawl on the R/V Hakuho Maru

兼務教授^{**} Professor 准教授 Associate Professor 助教 Research Associate 小島 茂明 KOJIMA, Shigeaki 狩野 泰則 KANO, Yasunori 矢萩 拓也 YAHAGI, Takuya

※大学院新領域創成科学研究科教授

YAHAGI, T.

KOJIMA, S.

KANO, Y.

海洋生命科学部門

生理学分野

Division of Marine Life Science,

Department of Marine Bioscience, Physiology Section

太古の海に誕生した生命は、地球の歴史とともに進化を遂げてき ました。生理学分野では、生物と海との関わり合いのなかから、生物が どのようにして海洋という場に適応し、生命を維持し、繋いでいるかに ついて、生理学的な立場から研究を進めています。海で暮らし、海で繁 殖していくためには海水の高い浸透圧や温度変化、様々な環境ストレ スに対する緻密な調節機構、適切な季節・条件での繁殖調節が必 要です。私たちは、それぞれのメカニズムを解明することにより、生物の 進化という壮大な歴史において、海洋生物がどのようにそれぞれの調 節メカニズムを獲得し、現在の繁栄をもたらしたのかに注目しています。

生物の生理を知ることは、まずその生物を観察することからはじまり ます。そこで、サメ・エイ・サケ・メダカ・ヌタウナギなど、多種の魚を飼育して 研究を行っています。血管へのカニュレーションやエコー診断などさまざ まな手法によって、浸透圧調節器官の機能や各種ホルモンの働きを 個体レベルで調べています。より詳細なメカニズムの解析では、水・イ オン・尿素などの輸送体や、ホルモンとその受容体を分子生物学的に 同定し、組織学的あるいは生理学的解析法を駆使して輸送分子の 働きやホルモンによる調節を調べています。ゲノムやトランスクリプトー ム情報に基づくバイオインフォマティクスを利用した探索や、それぞれの ニューロンや内分泌細胞の活動を観察する電気生理学やCa²⁺イメー ジングなど、多角的アプローチからホルモン機能やその働くメカニズム を解明しています。近年では、トランスジェニックおよびノックアウト個体 作製のような遺伝子工学的な手法もとり入れ、遺伝子、細胞から個体 にいたる広い視野と技術を用いて、海洋生物が生き、命を繋ぐメカニズ ムを解明しようと研究を進めています。

現在の主な研究テーマ

- ●海という環境への適応の仕組みについて、軟骨魚(サメ・エイ・ギン ザメ)や真骨魚(特にサケ・メダカ)などに注目し、遺伝子から個体レ ベルにいたる多様な手法を用いて明らかにしています。
- ●回遊魚などに見られる広い塩分耐性(広塩性)の仕組みを、狭塩性 魚と比較することにより解明しています。オオメジロザメなど、フィールド での生息環境調査も行い、包括的な生理学的研究を目指します。
- ●環境適応機構の普遍性や多様性を、系統進化や個体発生の観 点から明らかにします。
- ●体液調節、繁殖機能の調節に関わる視床下部・脳下垂体のホル モンによる全身制御メカニズムを解明します。
- ●ゲノム・トランスクリプトーム情報とバイオインフォマティクスを利用し て、環境適応に重要な遺伝子を見つけています。
- ●遺伝子工学を利用して各種遺伝子の導入や破壊を行い、その機 能を個体レベルで解明しています。
- ●これまで遺伝子操作が難しかった非モデル動物にも遺伝子改変 技術を導入し、進化の仮説をより直接的に証明するアプローチを 目指します。

HYODO, S.

Life originated in the ancient seas, and has acquired diverse functions during the long history of evolution. The Laboratory of Physiology attempts to clarify, from a physiological perspective, how organisms have adapted to various aquatic environments (salinity, temperature, pH, etc.) and reproduced. Our studies focus on the mechanisms enabling diverse adaptation and reproductive strategies by investigating function of osmoregulatory and reproductive organs and their regulatory mechanisms by hormonal and neuronal systems. To this end, we investigate several aquatic vertebrates by using a wide variety of physiological techniques at gene to organismal levels and

Ongoing Research Themes

Analysis of mechanisms for osmoregulation and reproduction in cartilaginous fish (sharks, rays and chimaeras), teleosts (salmonids and medaka), and cyclostomes (lampreys and hagfishes) from single cellular physiology to organismal physiology to understanding unity and diversity of adaptation and reproductive mechanisms.

compare diverse mechanisms from an evolutionary perspective.

- Analysis of euryhaline adaptation mechanisms of migratory fish. Field survey of euryhaline bull shark is in progress.
- Application of transgenic and genome editing techniques to model and non-model animals.

広塩性オオメジロザメ(左上)、卵殻内のゾウギンザメ胚(左下)、GFPで可視化 したニューロン(右上)、パッチクランプによる細胞活動の検出(右下)

Euryhaline bull shark (upper left), elephant fish embryo (lower left), neurons visualized with GFP (upper right), cellular activity examined by patch-clamp recording (lower right)

> 教授(兼) Professo 准教授 Associate Professor 助教 **Research Associate**

兵藤 晋 HYODO, Susumu 神田 真司 KANDA, Shinji 高木 亙 TAKAGI, Wataru

海洋生命 システム研<u>究系</u>

海洋生命科学部門

分子海洋生物学分野

Division of Marine Life Science,

Department of Marine Bioscience, Molecular Marine Biology Section

生命の誕生以来、生物進化の舞台となってきた海洋では、現在 でも多様な生物が多彩な生命活動を営んでいます。分子海洋生 物学分野では、ゲノム科学的な研究手法や、分子生物学的な研究 手法を活用して、重要で興味深い生命現象の分子メカニズムとそ の進化的、生態学的意義の解明を目指しています。

例えば、深海の熱水噴出域、潮間帯、河口域など多様な環境 に生息するために必要な分子の機能と、生物の進化、生息域、生 態学的地位との関係の解明や、生物多様性豊かなサンゴ礁域の 生態系の複雑性、共生、進化等のメカニズムの解明に、飼育実 験、フィールド調査、バイオインフォマティクス等を併用しながら挑 戦しています

さらに、これらの研究成果を踏まえて、生物を指標とする環境汚 染の解析や、サンゴ礁等の水圏生態系の遺伝的多様性保全の研 究にも取り組んでいます。

これらの研究を通じて、水圏の生態系・生物多様性の進化的成 り立ちをより深く理解すること、すなわち、多様な生き物が織りな す地球の豊かな自然が、どのように形成されてきたのかを解き明か し、その保全に貢献したいと考えています。

現在の主な研究テーマ

- ●深海(とくに熱水噴出域)、潮間帯、河口域の環境への生物の 適応機構とその進化
- ●水圏生物(とくに付着生物)の生態学的地位を支える分子機構 とその進化
- ●環境適応機構の進化と生物多様性との関係
- ●サンゴと褐虫藻の生理や共生に関わる分子機能の解明と、そのサンゴ礁の保全・再生への活用
- ●サンゴー微生物間の相互作用メカニズムの解明と、それらの病 気予防・管理への応用
- ●サンゴ礁等の水圏生態系の遺伝的多様性の理解と保全
- ●メダカ近縁種やイガイ類の環境応答や環境モニタリング技術 の研究

Various organisms have evolved in the sea. The Molecular Marine Biology Section conducts research to understand the diverse functions of aquatic organisms as well as their evolutionary and ecological significance through molecular and genomics analyses. Rearing experiments in the laboratory, field research, bioinformatics, and detailed molecular analyses are being conducted. For example, current studies investigate the molecular functions necessary to inhabit extreme environments (e.g., deep-sea hydrothermal vents, intertidal zones, and estuaries) and their implications in evolution, habitat, and ecological niches. Additionally, the evolution and complexity of coral reef ecosystems and mechanisms of symbiosis between zooxanthellae and corals are under way. We also strive to establish methods to analyze environmental pollution using living organisms as indicators as well as to conserve genetic diversity in coral reef and other aquatic ecosystems.

Through the above studies, we hope to gain a better understanding of how life on Earth with its diverse and rich ecosystems has evolved and to contribute to its conservation.

Ongoing Research Themes

- Adaptation mechanisms and evolution of living organisms in the deep sea (e.g., hydrothermal vents), intertidal zones, estuaries
- Molecular mechanisms determining ecological niches and their evolution in aquatic organisms, including sessile invertebrates
- Relationship between the evolution of environmental adaptation mechanisms and biodiversity
- Molecular mechanisms involved in physiology and symbiosis of corals and zooxanthellae, and their applications to conserve and regenerate coral reefs
- Molecular mechanisms of coral-microbe interactions, and their applications for disease prevention and management
- •Understanding and conservation of biodiversity of aquatic ecosystems, including coral reefs
- Molecular responses to the environment in Asian medaka fishes and mussels, and their applications to environmental monitoring

深海性二枚貝 (左下) とその飼育装置 (左上)。 サンゴ礁 (右上) とサンゴのポリプ (右下)

Deep-sea bivalves (lower left) and the rearing apparatus (upper left); Coral Reefs (upper right) and close-up of coral polyps (lower right)

秋 安 Professor
准教授 Associate Professor
助教 Research Associate

おん 十四

井上 広滋 INOUE, Koji 新里 宙也 SHINZATO, Chuya 高木 俊幸 TAKAGI, Toshiyuki

48

SHINZATO, C.

TAKAGI, T.

CATALOG ATMOSPHERE AND OCEAN RESEARCH INSTITUTE 2020

海洋生命科学部門

行動生態計測分野

Division of Marine Life Science,

Department of Marine Bioscience, Behavior, Ecology and Observation Systems Section

本分野では、魚類・爬虫類・海鳥類・海生哺乳類といった 海洋動物のバイオメカニクス・行動生態および進化について、 フィールド調査、生理実験、安定同位体比分析、分子遺伝学的 手法、バイオロギングなどの手法を駆使して調べています。

1.海洋高次捕食者のバイオメカニクス及び行動生態: 観察が難 しい海洋動物を調べるために、動物搭載型の行動記録計やカ メラを用いたバイオロギング研究を進めています。 時系列デー タを解析することにより、動物の水中三次元移動経路や遊泳 努力量を把握できます。画像情報からは動物が捕獲する餌や個 体間相互作用、あるいは動物の生息地利用などを把握できま す。生理実験や安定同位体比分析、あるいは分子遺伝学的な 手法を組み合わせることで、計測された運動や行動の至近要因 や究極要因を解明する事を目指しています。また、装置の小型 化やデータ大容量化などの改良を進めつつ、新たなパラメータ を計測できる新型装置の開発も行っています。

2."海の忍者"を用いた大気海洋境界層観測:海鳥やウミガメに 温度や塩分、さらに水中や空中の三次元経路を測定できる 測器を取り付けます。経路を分析することによって、海上風・ 表層流・波浪を測定できます。動物由来の物理環境データ は、既存の観測網の時空間的なギャップを埋めることに役立 ちます。

現在の主な研究テーマ

- ●マアナゴ、ウナギ、カジキ類等の魚類を対象とした行動生理研究
- ●ウミガメ類の回遊生態および生活史研究
- ●オオミズナギドリ、アホウドリ、ヨーロッパヒメウなど、海鳥類の行 動生理研究
- ●海生哺乳類のバイオメカニクスと採餌行動の研究
- ●新たなバイオロギング手法の開発

We investigate the biomechanics, behavioral ecology, and evolution of aquatic animals such as fish, sea turtles, seabirds, and marine mammals through field studies, physiological experiments, stable isotope analyses, molecular genetics, and biologging.

1.Biomechanics and behavioral ecology of marine top predators: Biologging is a new method that allows researchers to investigate phenomena in or around free-ranging organisms that are beyond the boundaries of our visibility and experience. We use animal-borne devices, which can record three-dimensional dive paths, swimming efforts, and visual information of the surrounding environment, including prey distribution, the physical environment, and other individuals (social interactions). We aim to understand the mechanisms (proximate factor) and functions (ultimate factor) of animal behavior by combining physiological experiments, stable isotope analyses, molecular genetics, and the development of new devices.

2. The physical environment of the boundary between the atmosphere and the ocean monitored by "Ocean Ninias": Using seabirds and sea turtles as "Ocean Ninjas" , we deploy small recorders on them to record the temperature, salinity, and their three-dimensional tracks. The fine scale movement provides information about ocean winds, surface currents, and waves. This information can fill the gaps in terms of both time and space.

Ongoing Research Themes

- Physiological behavior of fish (conger eel, eel, marlin, etc.)
- •Migration and life history of sea turtles in relation to their physiological constraints
- Behavioral ecology of seabirds (streaked shearwater, albatross, European shag. etc.)
- Improvement and development of biologging tools
- Biomechanics and foraging activities of marine mammals

オオミズナギドリの腹 部に取り付けたビデオ カメラで撮影された、オ オミズナギドリがカタク チイワシを捕らえた瞬 間の映像 Images acquired from an animal-borne video camera of a streaked shearwater capturing a

Japanese anchovy under

マッコウクジラに長いポールを用 いて吸盤タグ(自丸)を取り付け たところ。

吸盤タグには、動物カメラや行動 記録計、回収のための発信機が 取り付けられている。時間が経つ と自然と剥がれ落ち、海面に浮く 什組みになっている

Deployment of a suction-cup attached tag (white circle) to a sperm whale using a long pole. The tag, which consists of an animal borne-data logger, camera, and transmitter, automatically detaches from the whale and floats to the ocean surface.

AOKI, K.

佐藤 克文 SATO, Katsufumi 坂本 健太郎 SAKAMOTO, Kentaro 青木 かがり AOKI, Kagari

SATO, K.

SAKAMOTO K

海洋生命 システム研<u>究系</u>

海洋生物資源部門

環境動態分野

Division of Marine Life Science,

Department of Living Marine Resources, Fisheries Environmental Oceanography Section

海洋は、魚・貝類や海藻など多くの恵みを育み、人類の生活 を支えています。これらの海洋生物資源は、海洋環境変動の 影響を強く受けます。例えば、数万トンから450万トンと漁獲 量変動を示す日本近海のマイワシは、卵や仔稚魚の輸送経路 である黒潮・黒潮続流域の海洋環境変動の影響を強く受ける ことが当分野の研究から明らかになりました。しかし、多くの 海洋生物の生活史(産卵場所や回遊経路など)は未だ未解明 な部分が多く、どのようなメカニズムを通して海洋環境変動が 海洋生態系に影響を与えているのかは多くの謎に包まれていま す。地球温暖化という環境問題に直面した人類にとって、海洋 環境変動が海洋生態系に影響を与える仕組みを解明し、将来 の影響評価をすることが重要な課題となっています。

当分野では、沿岸域から沖合域、さらには全球規模の海洋 環境変動の要因の解明と、海洋環境変動が海洋生態系なら びに海洋生物資源の変動に与える影響の解明を目指して、最 先端の現場観測研究と数値モデル研究の双方を推進していま す。観測研究では、黒潮や親潮の流れる西部北太平洋域を対 象として、自走式水中グライダ、GPS波浪ブイ等の最新の観 測機器を導入して海洋環境の実態解明を行うとともに、耳石 の安定同位体による魚類の経験環境の復元に取り組んでいま す。また、岩手県大槌湾に設置した係留ブイによる内湾環境の 連続モニタリングと現場観測から、うねりや内部潮汐などの湾 外からの物理的要因が湾内の海洋環境に及ぼす影響を調べて います。一方、数値モデル研究では、粒子追跡法を導入した新 たな海洋物質循環・生態系モデリング手法の開発に取り組む とともに、魚類の遊泳実験などを実施し、その結果をもとに魚 類成長一回遊モデルを構築し、地球温暖化影響実験等を実施 して、海洋生物資源の変動要因の解明と将来の気候変化によ る影響評価に向けた研究を展開しています。

現在の主な研究テーマ

- ●イワシ類、マアジ、サンマ等海洋生物資源の変動機構および魚 種交替現象の解明
- ●地球温暖化が海洋生態系および海洋生物資源の変動に与える影響の解明
- ●黒潮、黒潮続流、黒潮親潮移行域における生物地球化学循 環過程の解明
- ●有害生物や有害物質の輸送・分布予測モデルの開発
- ●新世代海洋観測システム・海洋生態系モデルの開発

魚類 (サンマ) 成長一回遊モデルを用いた温暖化影響評価実験 Numerical experiment to evaluate climate change effects on fish (Pacific saury) using a fish growth - migration model

ITO, S.

KOMATSU, K.

MATSUMURA, Y.

Ocean provides variety of benefits, including fish, shellfish and seaweed, and sustains human living. Recently, many studies showed the importance of climate and ocean variability on the fluctuation of living marine resources. For example, it has been elucidated that the large fluctuation of Japanese sardine closely related to the ocean environments in the Kuroshio and Kuroshio Extension, where their eggs and larvae are advected. However, life history of many marine livings (spawning ground, migration route, etc.) is still unknown and the mechanism of ocean variability impacts on living marine resources is still mystery. Facing to the global change, it is urgent task for human beings to elucidate the mechanism of ocean variability impacts on marine ecosystems and evaluate the effect of future climate change on living marine resources. Our group studies the dynamics of physical oceanographic processes and their impacts on marine ecosystem and fisheries resources via physical-biological interactions by promoting both field observations and numerical simulations. We are conducting high technical observations using underwater gliders and GPS wave buoys and investigating fish larval environments using otolith stable isotopes. Impacts of swells and internal tides on coastal marine environments are studied with real-time buoy monitoring of Otsuchi Bay. A new generation biogeochemical and marine ecosystem model incorporating particle tracking methods has been developed. To elucidate the key factors to control fluctuations of living marine resources and evaluate climate change effects on them, laboratory experiments on fish swimming have been conducted and fish growth - migration models have been developed.

Ongoing Research Themes

- Fluctuation and species alternation mechanism of important living marine resources
- Impacts of global warming on marine ecosystem and fluctuation in living marine resources
- Physical processes related to biogeochemical cycles in the Kuroshio and its adjacent regions
- Transport modeling of harmful organisms and toxic substances
- Development of new-generation observation system and marine ecosystem models

教授 Professor 兼務准教授^{**} Associate Professor 助教 Research Associate 伊藤 進一 ITO, Shin-ichi 小松 幸生 KOMATSU, Kosei 松村 義正 MATSUMURA, Yoshimasa

※大学院新領域創成科学研究科准教授

海洋生物資源部門

資源解析分野

Division of Marine Life Science,

Department of Living Marine Resources, Fish Population Dynamics Section

本分野では、海洋生物の個体群を対象として、数理的手法を 用いた研究を展開しています。まず、限りある海洋生物資源を合 理的かつ持続的に利用するための、資源管理・資源評価の研究 を行っています。近年では、日本周辺のマサバとノルウェー等が 漁獲しているタイセイヨウサバの資源評価と管理を比較した研 究を行うことで、両種の生活史の違いが漁業や資源管理に与え る影響の重要性を示すことができました。また、マサバやスケトウ ダラ等のTAC対象魚種の資源評価の信頼性に関する検討を行 い、VPAを用いた資源量推定におけるバイアスの存在とその原 因を示しました。これらに加えて、海洋生物の進化動態に焦点を あてた理論研究も進めており、海洋酸性化に対する円石藻の適 応を予測するための研究にも取り組んでいます。利用している数 理的手法としては、①VPAや統合モデルに代表される資源評価 モデルに加えて、②最尤推定・ブートストラップ・階層ベイズモデ ル・MCMCといった計算機集約型の統計学的手法があります。 さらに、③行列個体群モデル・PDE個体群モデル・個体ベース モデル・最適生活史モデル・量的遺伝モデルといった各種の数 理モデルを駆使しています。当分野では、行政のニーズに応じて 資源評価のための数値計算を補助したり、他分野の研究者から 実証データの統計解析を受託することで、社会やアカデミアへ の貢献を日常的に行っています。

現在の主な研究テーマ

●海洋生物の資源評価と管理に関する研究

VPAや統合モデルを用いて、断片的で誤差を含んだ漁業統計 や試験操業データから、個体数や生態学的パラメータを統計 学的に推定するための研究や、環境の不確実性に対して頑健 な資源管理を実現するための研究をしています。

●中立遺伝子情報を用いた個体数推定法の開発

個体群サイズを推定するための新しい手法を開発していま す。遺伝情報と齢構造を取り入れた個体群モデルを作り、ス パコンを用いることで、階層構造をなすパラメータのベイズ推 定を行います。

●海洋生物の進化生態に関する理論研究

個体群動態を記述するモデルは、進化動態を記述するレプリ ケーター・ダイナミクスのモデルへと転用可能であるため、海洋生 物の生活史進化や繁殖生態に関する理論研究も行っています。 Our group focuses on the population dynamics of marine organisms from the viewpoint of applying various mathematical techniques. Research in the group addresses a wide range of questions broadly concerning fisheries stock management, conservation ecology, and evolutionary ecology. Our research utilizes a wide range of modelling techniques, from the models for fisheries stock management (e.g., VPA and integrated models) to computer-intensive statistical methods (e.g., maximum likelihood estimation, bootstrap, hierarchical Bayesian modelling, and MCMC). Our approach also includes the modelling techniques established in theoretical biology, such as the matrix-population models, PDE-population models, individual-based models, optimality models, and quantitative genetics models. We contribute to both society and academia, by supporting numerical simulations for governmental stock management and by achieving multidisciplinary collaboration through statistical consulting for empirical studies, respectively.

Ongoing Research Themes

- •Management and assessment of marine living resources : We study the statistical methodology to estimate population sizes and ecological parameters from fishery-derived, fragmental, noisy data, as well as to develop management procedures robust to environmental uncertainties.
- Population size estimation using neutral genetic information : This is a challenging study to estimate the wild population size of marine organisms. We employ a genetics-incorporated agestructured population model implemented on a supercomputer for establishing new methods for the next generation.
- Theoretical approach to the evolutionary dynamics of marine organisms : In a mathematical sense, population models are closely-related to the models to describe replicator dynamics or evolutionary dynamics. We thus pursue theoretical studies on the life history evolution and reproductive ecology of marine organisms.

海洋生物資源の評価と管理のプロセス The process of stock evaluation and management of living marine resources

准教授 Associate Professor
助教 Research Associate

平松 一彦 or HIRAMATSU, Kazuhiko 入江 貴博 te IRIE, Takahiro

HIRAMATSU, K.

IRIE. T.

海洋生物資源部門

資源生態分野

Division of Marine Life Science,

Department of Living Marine Resources, Biology of Fisheries Resources Section

私たちが利用している海洋生物資源は、海洋の生産性に基づ く野生の動植物であり、海洋環境の変動に伴って大きく自然変 動します。成体の成熟や産卵、生まれた幼生の成長や生残、産 卵場から成育場への分散と回遊など、いずれの生物の特徴も、 海の環境に依存して変化します。そしてその変化の中には、した たかな海の動物の生存戦略が隠されているのです。

資源生態分野では、海洋生物の自然変動のしくみと生存戦略 を明らかにすることを目指し、潜水調査・飼育実験・乗船調査・ 安定同位体分析など様々な手法を用いて研究を行っています。具 体的な研究内容としては、貝類・頭足類・魚類など人間が生物 資源として利用する動物を主な研究対象として、産卵生態や繁 殖戦略、採餌生態、初期生態や加入量変動のしくみ、およびそ れらに種間や海域間で違いが生じるしくみなどです。それらを解 明するためには、研究対象とする資源生物と密接な関係を持つ 多くの生物の生態についても知る必要があります。例えば小型 無脊椎動物の個体群動態を理解するには、その生息地となる藻 類や、餌生物・捕食者となる他の生物の動態も知らなくてはいけ ません。そこで当分野では、漁獲対象として重要ではなくても、 資源生物と密接な関係を持つ、あるいは生態系の中で重要な役 割を果たしている生物種や生物群についても生態学的な研究を 展開しています。また成熟サイズや生殖腺へのエネルギー配分と いった繁殖特性には、同一種内でも地域や季節、個体によって 変異があることが知られています。それら異なる成熟特性を持っ た親から産み出される卵の量と質の違いも、生き残る子の量に 影響します。このような変異はどうして生じるのか、変異を持つこ とが個体群の変動にどのように影響しうるのか、という進化生 態学的課題にも取り組んでいます。

現在の主な研究テーマ

- ●貝類・甲殻類・棘皮動物などの底生生物の生態学的研究
- ●藻場や干潟の生物群集・食物網構造の研究
- ●イカ類の多様な繁殖様式の進化に関する研究
- ●海洋環境の個体群特性への影響に関する研究
- ●地域的有用水産資源を形成する魚類の生活史に関する研究
- ●硬骨魚類の初期生態に関する研究

Marine animal resources fluctuate naturally depending on marine environment. Marine animals generally produce large number of eggs, and the recruitment of juveniles to adult population is determined by the growth and mortality rates in early life stages. Individuals experience different physical and biological environment, and have different growth and maturation characteristics. Such individual differences result in various reproductive traits of adults, and eventually in quantity and quality of egg production that affect recruitment of the next generation. The aims of our research are to understand the life history strategy of marine animals, such as fish, mollusk and crustacean species, that underlies the mechanisms of recruitment fluctuations and eventual population dynamics. Our results will constitute the basis of sustainable use of living marine resources.

Ongoing Research Themes

- Ecology of benthic organisms, such as mollusks, crustaceans and echinoderms
- Community and food-web structures in seaweed beds and tidal flats
- Evolution of reproductive strategy in squid
- Effect of environmental condition in life history traits in cephapolods
- Life history of fishes comprising local fisheries resources
- Early life history of Teleosts

藻場の生物群集調査 SCUBA sampling of invertebrate community on sea-grass

野外産卵場におけるヤ リイカの卵塊 Egg mass of squid Heterololigo bleekeri at natural spawning ground

SARUWATARI, T.

教授 Professor 准教授 Associate Professor 助教 Research Associate 河村 知彦 KAWAMURA, Tomohiko 岩田 容子 IWATA, Yoko 猿渡 敏郎 SARUWATARI, Toshiro

52 CATALOG ATMOSPHERE AND OCEAN RESEARCH INSTITUTE 2020